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STRATEGIES IN COMPUTER TOURNAMENTS

Most strategies are quite simple rules

v

Interpretability

Always Defect

Random Tit For Tat

Introduce complex strategies

Always Cooperate *

Understand properties of them



STRATEGIES IN COMPUTER TOURNAMENTS

* tutorial tomorrow



mean std min 5% 25% 50% 75% 95% max
EvolvedLookerUp2_2_2* 2.955 0.010 2.915 2.937 2.948 2.956 2.963 2.971 2.989
Evolved HMM 5% 2.954 0.014 2.903 2.931 2.945 2.954 2.964 2.977 3.007
Evolved FSM 16* 2.952 0.013 2.900 2.930 2.943 2.953 2.962 2.973 2.993
PSO Gambler2_2_2* 2.938 0.013 2.884 2.914 2.930 2.940 2.948 2.957 2.972
Evolved FSM 16 Noise 05* 2.919 0.013 2.874 2.898 2.910 2.919 2.928 2.939 2.965
PSO Gambler1_1_1* 2.912 0.023 2.805 2.874 2.896 2.912 2.928 2.950 3.012
Evolved ANN 5% 2.912 0.010 2.871 2.894 2.905 2.912 2.919 2.928 2.945
Evolved FSM 4* 2.910 0.012 2.867 2.889 2.901 2.910 2.918 2.929 2.943
Evolved ANN* 2.907 0.010 2.865 2.890 2.900 2.908 2.914 2.923 2.942
PSO Gambler Mem1* 2.901 0.025 2.783 2.858 2.884 2.901 2.919 2.942 2.994
Evolved ANN 5 Noise 05* 2.864 0.008 2.830 2.850 2.858 2.865 2.870 2.877 2.891
DBS 2.857 0.009 2.823 2.842 2.851 2.857 2.863 2.872 2.899
Winneri2 2.849 0.008 2.820 2.836 2.844 2.850 2.855 2.862 2.874
Fool Me Once 2.844 0.008 2.818 2.830 2.838 2.844 2.850 2.857 2.882
Omega TFT: 3,8 2.841 0.011 2.800 2.822 2.833 2.841 2.849 2.859 2.882

https://doi.org/10.1371/journal.pone.0188046.t002

Top performing strategies in a tournament with over 200 strategies.



STRATEGIES IN COMPUTER TOURNAMENTS

* From the training emerged strategies
that were cooperative but also took

advantage of simple strategies

» Strategies trained in environments

with errors were more adaptable

[1] Reinforcement learning produces dominant strategies
for the iterated prisoner’s dilemma.
https://doi.org/10.1371/journal.pone.0188046

[2] Evolution reinforces cooperation with the emergence of
self-recognition mechanisms.
https://doi.org/10.1371/journal.pone.0204981

[3] Properties of winning iterated prisoner's dilemma
strategies.
https://doi.org/10.1371/journal.pcbi.1012644



https://doi.org/10.1371/journal.pone.0188046
https://doi.org/10.1371/journal.pone.0204981
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LEARNING IN POPULATIONS

u: mutation

|
1 +e _ﬁ(ﬂblue_ﬂred)

Cb(ﬂLa TiRyr) =

p: strength of selection

1 — u: imitaton



LEARNING IN POPULATIONS
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LEARNING IN POPULATIONS

High benefit (b = 10)
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LEARNING IN POPULATIONS

| * Cooperation still evolves even with
limited memory

 As individuals remember two or three
recent interactions, the cooperation
rates approach the classical limit

[4] Evolution of reciprocity with limited payoff memory.
https://doi.org/10.1098/rspb.2023.2493
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STRATEGIES IN REPEATED GAMES
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STRATEGIES IN REPEATED GAMES

Can we say anything about Nash equilibria in repeated
games with higher memory thann = 17

reactive—n

Nash
equilibria



STRATEGIES IN REPEATED GAMES

Definition 1.

A reactive-n strategy can be defined as 2"-dimensional vector P=(py-i)y-icy-i With 0<p-i<1
where h™" refers to an n-history of the co-player from the space of all possible co-player histories.

1 1
Examples. Tit for tat (1,0) Random (—,—)

A reactive-1 strategy can be defined as: p = (p., pp) 2 2
A reactive-2 strategy can be defined as: p = (P-c> Pcps Pocs Pop)

A reactive-3 strategy can be defined as: p = (pCCC, Pccps Pcpocs Pcpps Pocc: Pocps Pbpcs pDDD)

Definition 2.
A strategy p for a repeated game is a Nash equilibrium if it is a best response to itself.
That is #(p, p) > n(o, p) for all other strategies o .







STRATEGIES IN REPEATED GAMES

Theorem. A reactive strategy p € £, is a Nash equilibrium if and
only if Z(p, p) > #(P, p) for all pure self-reactive strategies P.

1 2 3 n—1 n
C D C D C D C D C D
C(r s) C(r S) C(r S) C<r s) C<r S)
Dtp Dtp Dtp"'Dtp Dtp
C D C C C

self-reactive-n



STRATEGIES IN REPEATED GAMES

Theorem. A reactive strategy p € £, is a Nash equilibrium if and
only if Z(p, p) > #(P, p) for all pure self-reactive strategies P.

P = (Pcce>Pecpr Pepes Pepps Poccs Pocps Popcs Popp) 256



STRATEGIES IN REPEATED GAMES

Donation Game (b/c = 2)

Il
Theorem. A reactive-2 strategy p = (Pcc» Pcps Pocs Ppp) 1S @ cooperative “

Nash equilibrium if and only if its entries satisfy the conditions, w W | Ppp
Pcp + Ppc I c C RO / 1
= 1, <l——=-— <l——. 0 < .,

Donation Game (b/c = 2)

Tl

Theorem. A reactive-2 strategy p = (Ppcc» Pcps, Ppcs Ppp) 1S @ defective Nash
equilibrium if and only if its entries satisfy the conditions, <

L Pcc

¢ PcptPpc . € [,
Pcc S — <—, ppp=0. 1
b 2 2b 0 \%C

Pcp

1 0




STRATEGIES IN REPEATED GAMES

 Algorithm to verify whether a given
|\ reactive-n strategy is an equilibrium.

* |t’'s not just that having more memory
gains you nothing. You also gain

nothing from having more information.

. Fully characterize cooperative &
defective equilibriagfor n = 2 and
n=>.

[5] Conditional cooperation with longer
https://doi.org/10.1073/pnas.2420125121
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Theorem. Let pE X, be a reactive-n strategy and the game

additive. Then there exist a pure self-reactive-(n — 1) strategy p
that is a best response.

("5 %)



STRATEGIES IN REPEATED GAMES

Algorithm to verify whether a given
reactive-n strategy is an equilibrium.

It’s not just that having more memory
gains you nothing. You also gain

nothing from having more information.

Fully characterize cooperative &
defective equilibri%for n = 2 and
n=>.

Under the correct conditions you can
have less information.

[5] Conditional cooperation with longer
https://doi.org/10.1073/pnas.2420125121

[6] Can | afford to remember less than you?
https://doi.org/10.1016/|.econlet.2025.112300



https://doi.org/10.1016/j.econlet.2025.112300

SUMMARY

. Current models on direct reciprocity make strong
assumptions. Can we explore their impact?

 What kinds of cognitive capacities are required for
reciprocal altruism?
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. . . o Franziska Lesigang
[2] Evolution reinforces cooperation with the emergence of self-recognition
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https://doi.org/10.1371/journal.pone.0204981

[3] Properties of winning iterated prisoner's dilemma strategies. 0 Nikoleta-v3
https://doi.org/10.1371/journal.pcbi.1012644
Yy  @NikoletaGlyn
[4] Evolution of reciprocity with limited payoff memory.
https://doi.org/10.1098/rspb.2023.2493 @ http://nikoleta-v3.github.io

[5] Conditional cooperation with longer.
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[6] Can | afford to remember less than you?

https://doi.org/10.1016/j.econlet.2025.112300 THANK YOU |



https://doi.org/10.1371/journal.pone.0188046
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