Exploring Cognitive Constraints in Models
of Direct Reciprocity
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Direct reciprocity is a mechanism for the
emergence of cooperation in repeated social
Interactions.
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p: strength of selection
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Expected payoffs
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Expected payoffs

b=3andc=1
Low mutation y —» 0



Expected payoffs Limited memory payoffs
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Expected payoffs Limited memory payoffs

ooperation rate
52.0%

b=3andc=1
Low mutation y —» 0



o o o o o o o o o o
sl | sl T now U sl | U sl |
l) [} ] ] l)
(4 o . . © . .
S ° . o ) ° )
O O
= ® =
O ® O ® O @ O
£ o~ sl | §=
= sl | pog | §sd | =
O O
+ +
® O ® o o o ® o ® o
[ sl | Ppog [ st | sl | oy
>
1 2 o0 1 2

# turns # turns

=0
o,
-



O

Low benefit (b = 3)
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52.16 %

36.85 %

49.69 % 48.97 % 49.85 % 51.14 %
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High benefit (b = 10)
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Perfect Payoff

51.08 %
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85.6 % 85.38 %

Limited Payoff

Final Round of Two Last Two Rounds of One Last Two Rounds of Two Average Payoff of One
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https://arxiv.org/abs/2311.02365

* Even with individuals considering only their last interaction,
cooperation can still evolve.

 However, strategies tend to be less generous and cooperate
less frequently.

. As individuals recall the payoffs of two or three recent
iInteractions, the cooperation rates approach the classical
limit.
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P = (Pphen: 7(p,p) = n(o,p)

No mutant strategy can achieve a
higher payoff against itself than itself.

g
Is p Nash? l

7(p, p) = #(m, p)

No memory-7n mutant strategy can achieve a
higher payoff against itself than itself.

|

z(p,p) = =(p, p)

No pure self-reactive—7n mutant strategy can achieve a
higher payoff against itself than itself.
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A reactive—n strategy p, is a Nash strategy

If, and only If, no pure self-reactive—n strategy can achieve a
higher payoff against itself.

We use this result to characterise cooperative Nash equilibria
(partners) among reactive-2 and reactive-3 strategies.



A reactive-2 strategy can be defined as the vector p = (p-c., Pcp> Ppcs Ppp)s @and it is a cooperative Nash
strategy if and only if, the strategy entries satisfy the conditions,
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A reactive-3 strategy is defined by the vector p = (p-cc» Pccps Pepos Pcpps Poccs Pocps Popcs Pppp)s
and it is a cooperative Nash strategy, if and only if the strategy entries satisfy the conditions,

Pccc =1

+ 1
Pcpc T Ppep <1 C
2 2 b
Pccp T Pcpe t Ppcc <1 1 c
3 - 3 b
Pcpp + Ppcp T Pppc <1 2 C
3 - 3 b
Pcep T Pepp + Ppce + Pppe <1 I ¢
4 - 2 b

c

Pppp S 1——

b



Pcc=1

Axelrod's Prisoner's Dilemma
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Donation Game (b/c
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On arXiv soon

* Ageneral algorithm to assess whether a given reactive-n
strategy is a Nash equilibrium

* Explicitly characterise cooperative Nash equilibria among
reactive-2 and reactive-3 strategies



* | wanted to convey that our models rely on assumptions, and it is
sometimes beneficial to relax them to better understand their
effects.

 We have made progress in analyzing higher-memory strategies
for repeated games.

My collaborators More information

@nikoletaglyn

Alex McAvoy & Christian Hilbe & Martin Nowak
http://web.evolbio.mpg.de/social-behaviour/

Special thank you to Ethan Akin https://arxiv.org/abs/2311.02365
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