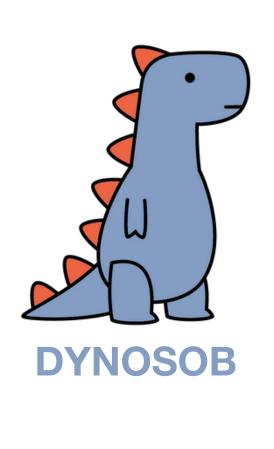
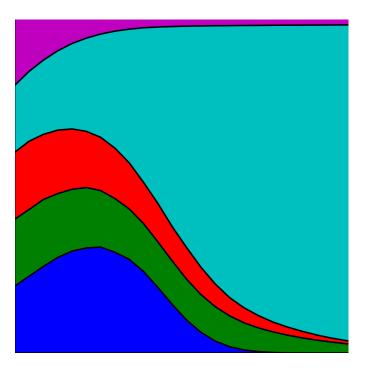
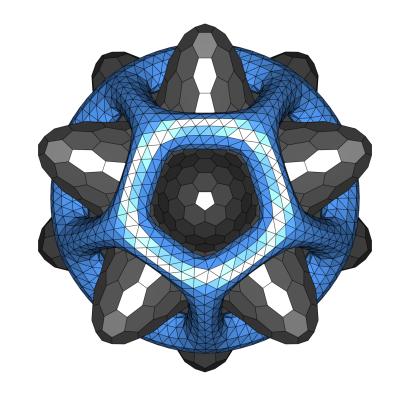
# Exploring Cognitive Constraints in Models of Direct Reciprocity

@nikoletaglyn









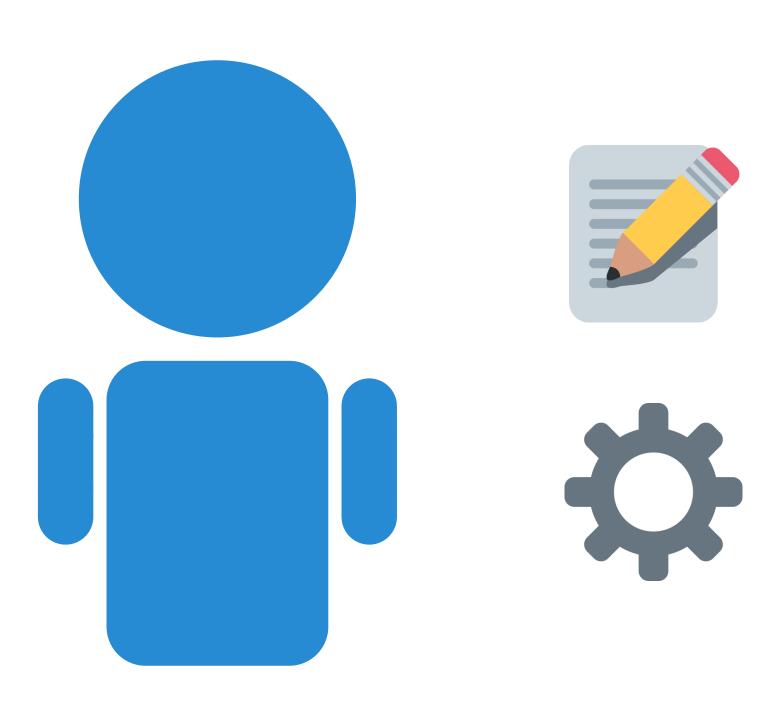
**Direct reciprocity** is a mechanism for the **emergence of cooperation** in repeated social interactions.

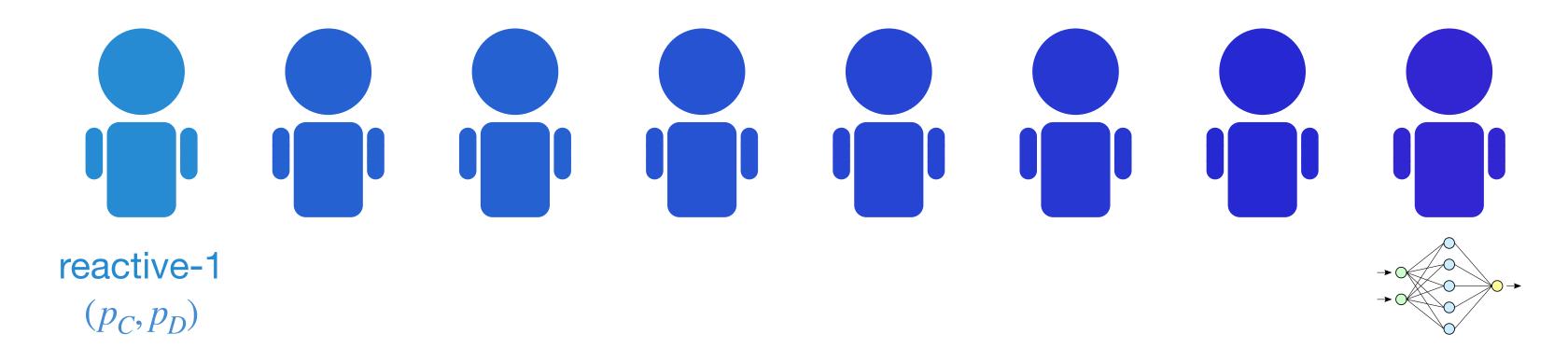
$$\begin{array}{ccc}
C & D \\
C & \left(b-c & -c \\
D & b & 0
\end{array}\right)$$

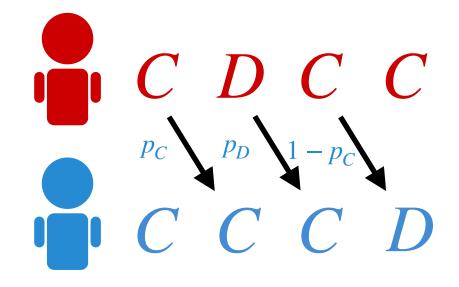




D C ... C





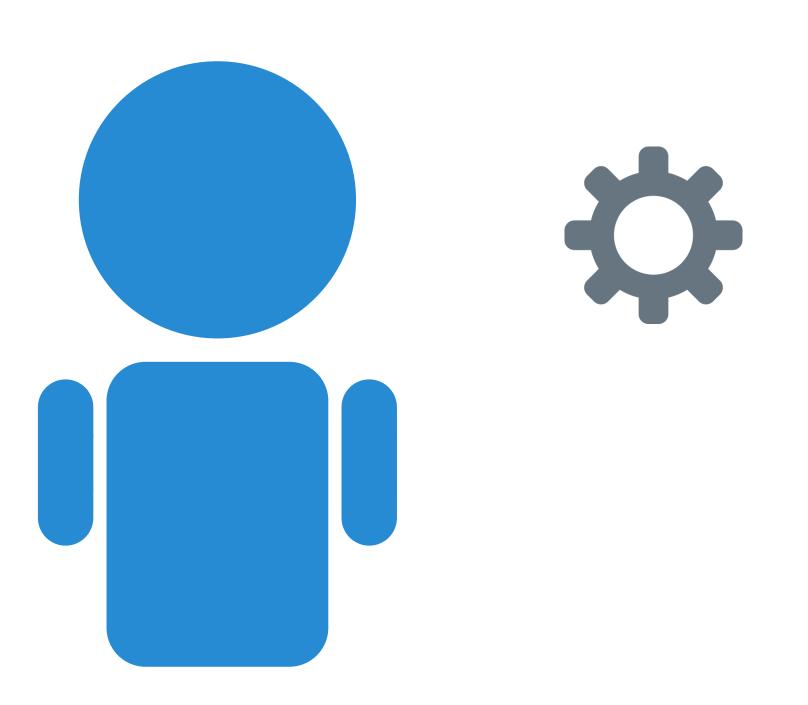


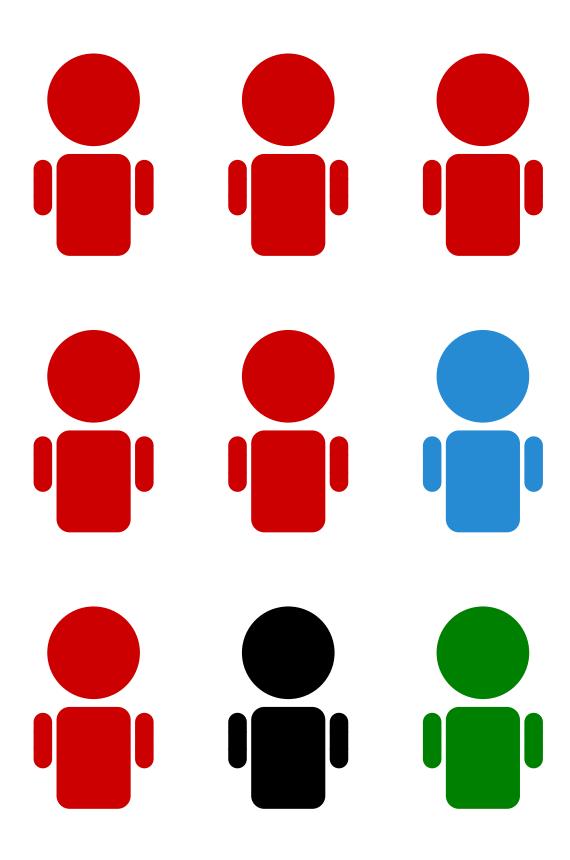
Alex McAvoy, Christian Hilbe

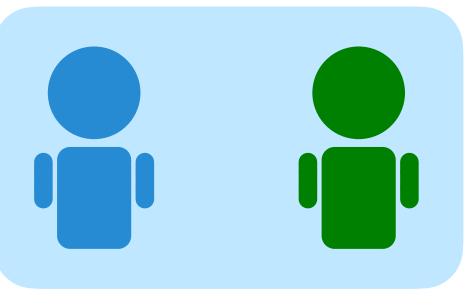
# 2. Reactive strategies with longer memory

Alex McAvoy, Christian Hilbe

## 2. Reactive strategies with longer memory







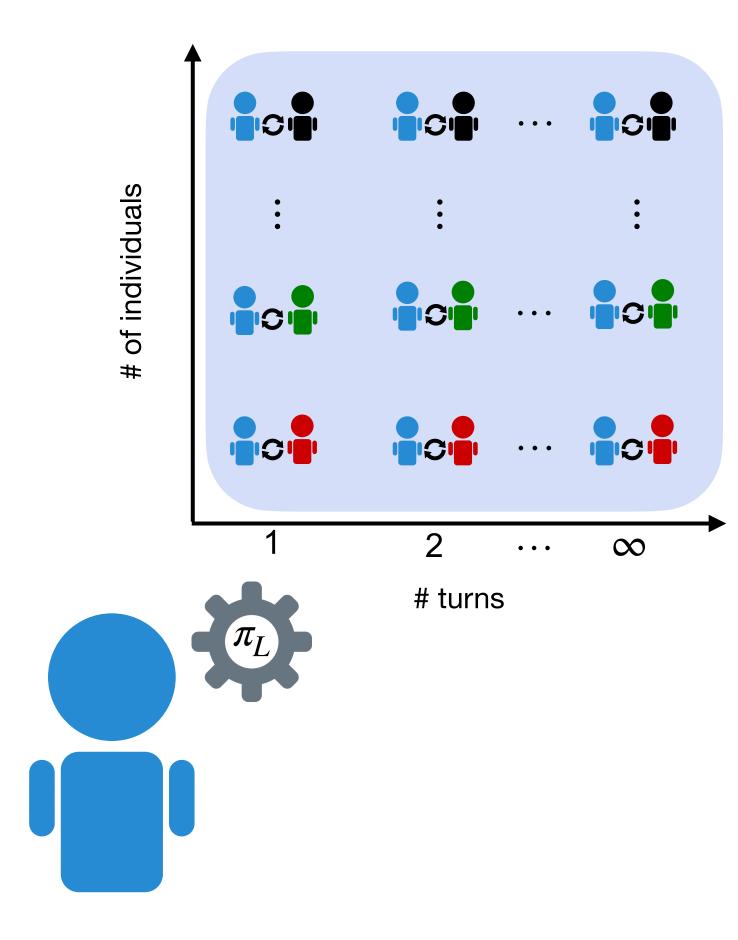
 $\mu$ : mutation



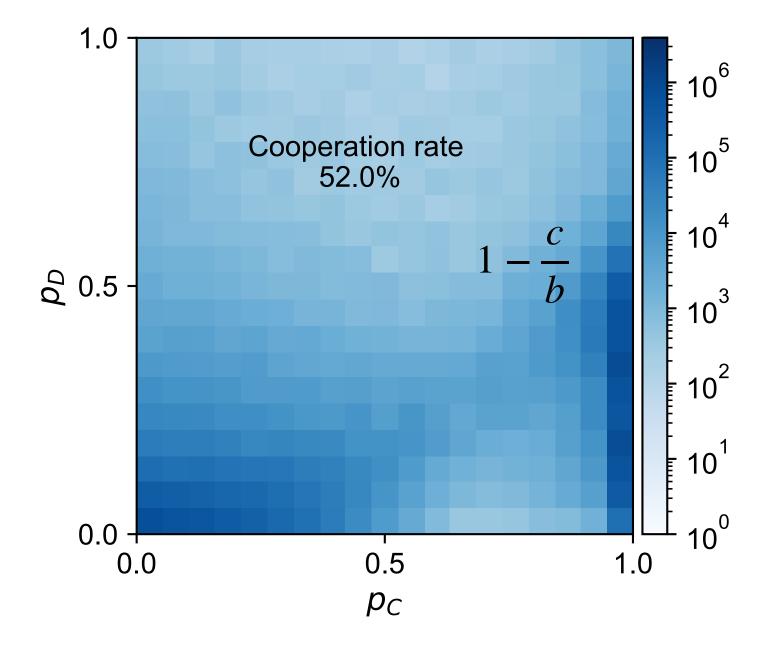
 $1 - \mu$ : imitaton

π: updating payoffs β: strength of selection

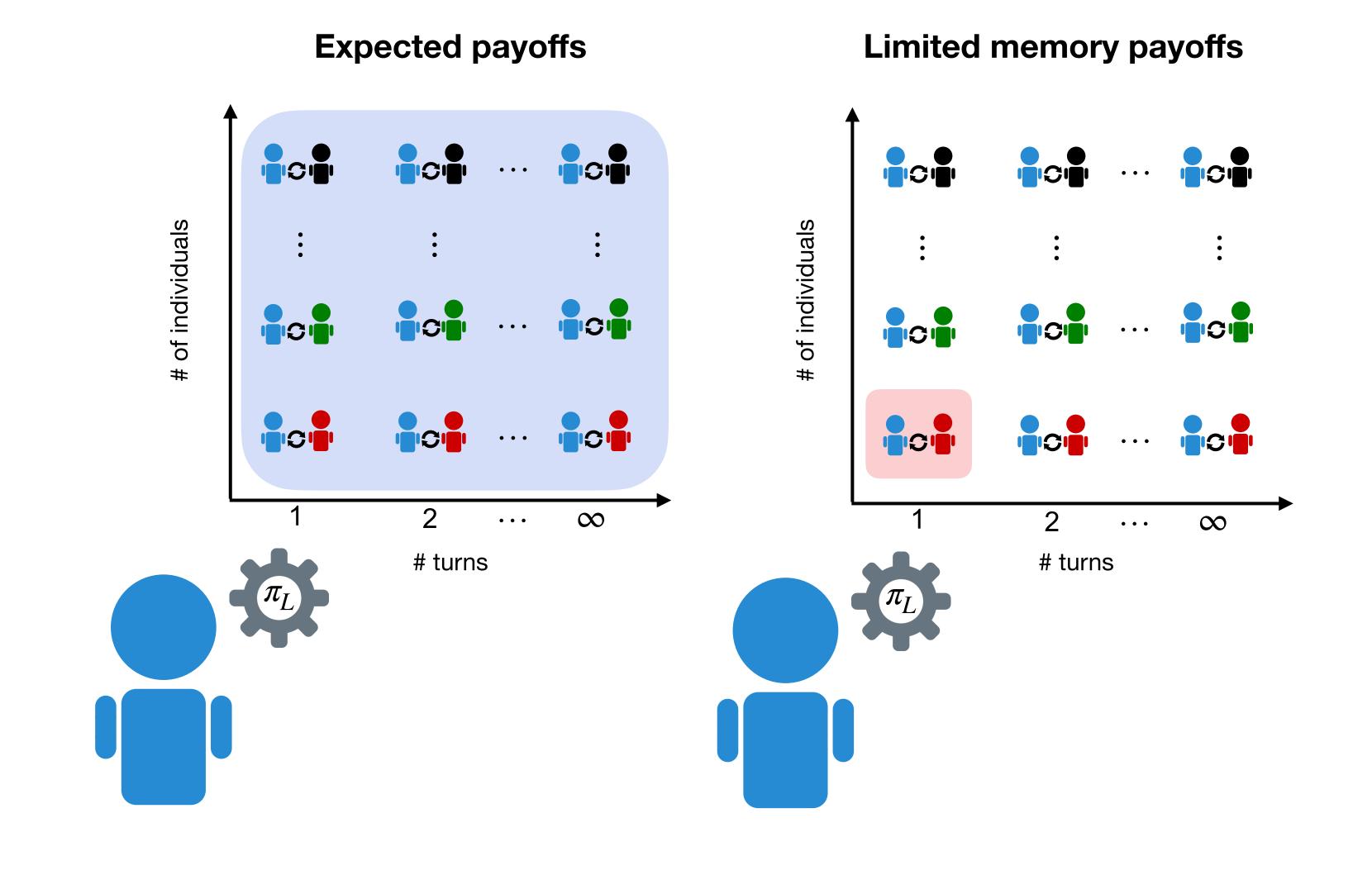
## **Expected payoffs**



### **Expected payoffs**

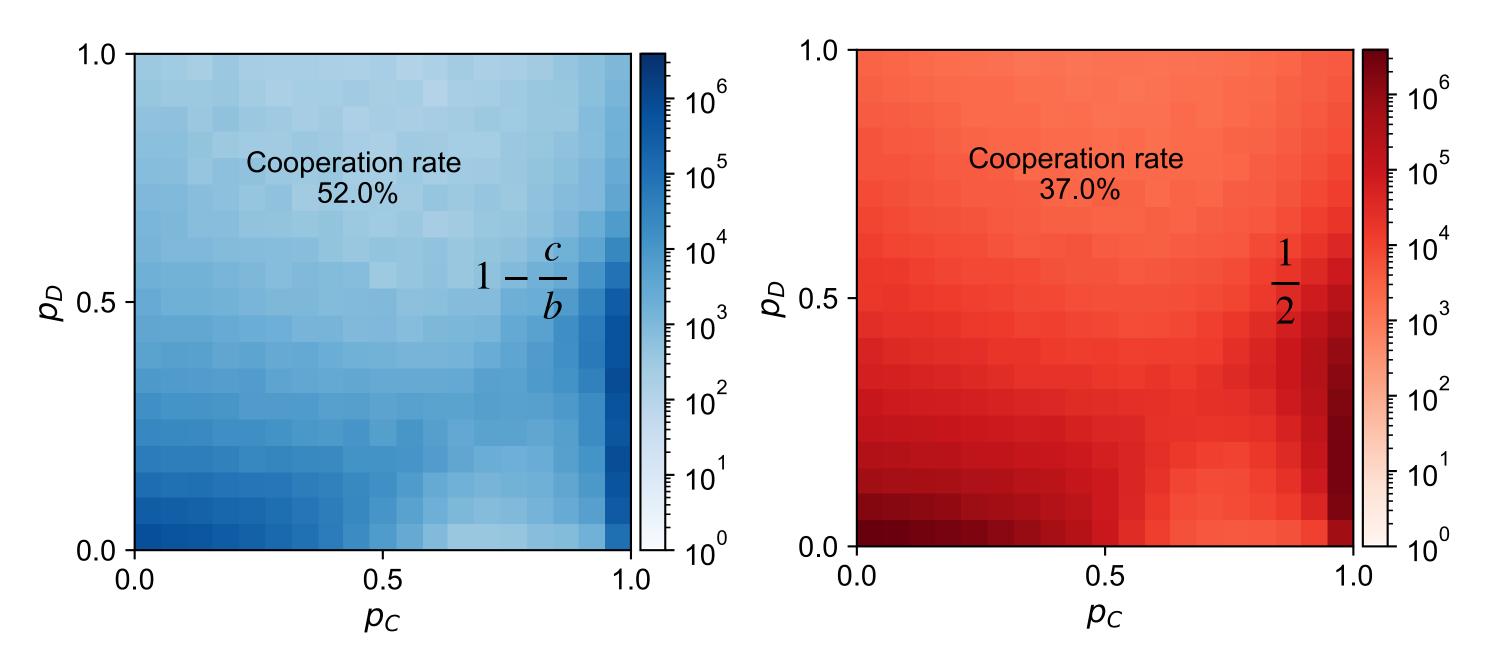


b=3 and c=1Low mutation  $\mu \to 0$ 

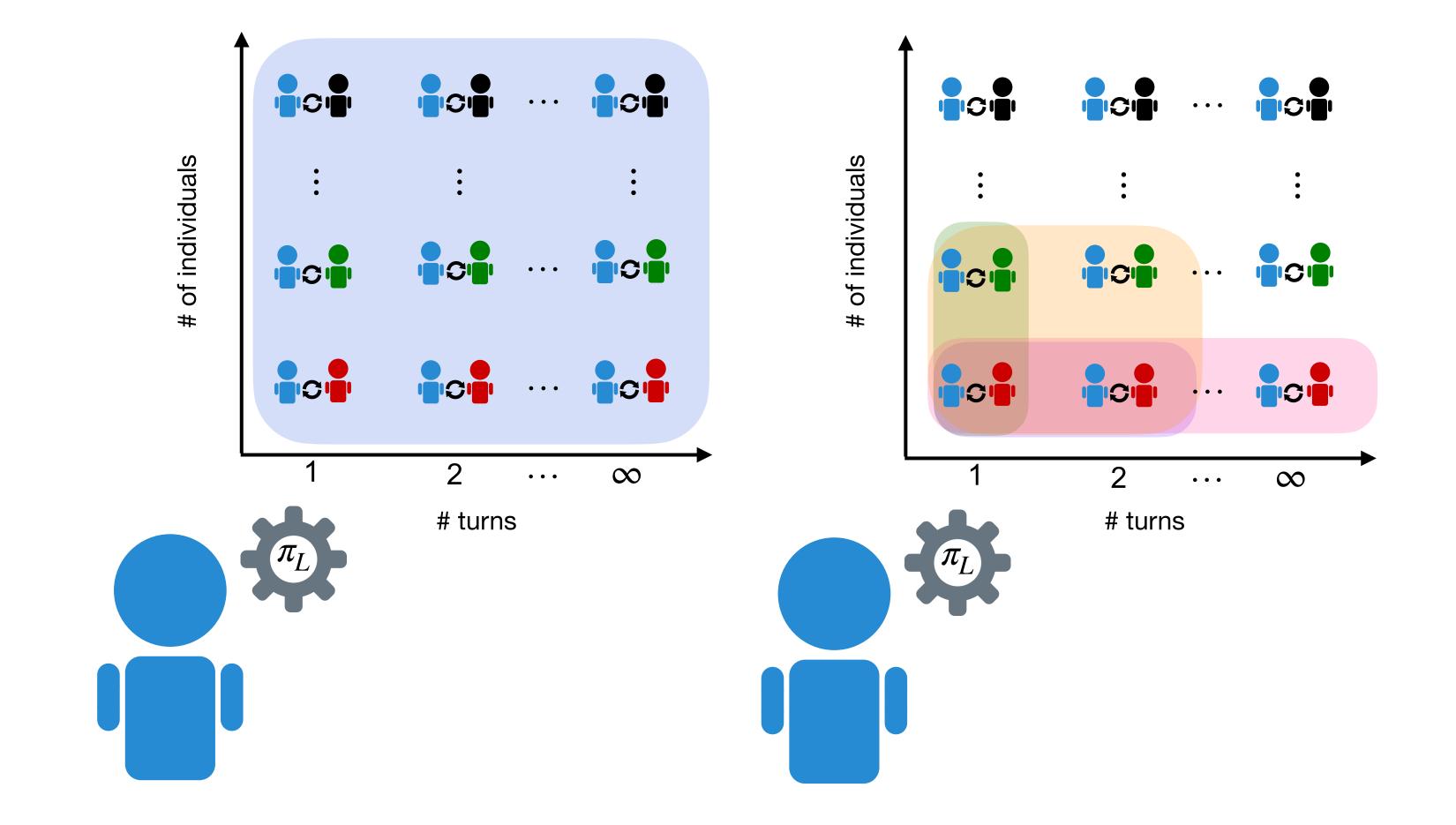


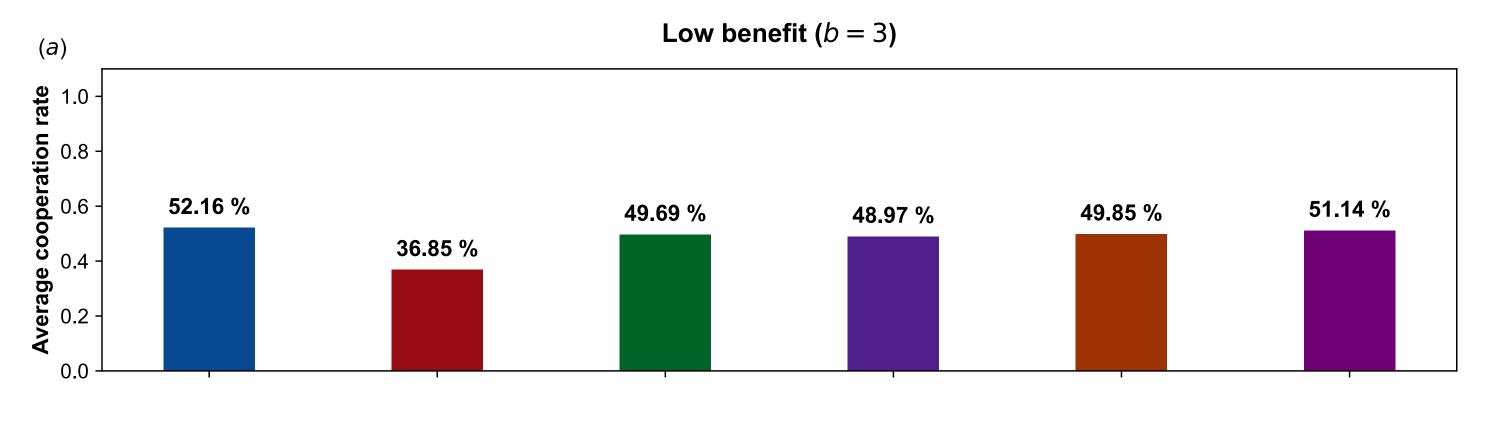
#### **Expected payoffs**

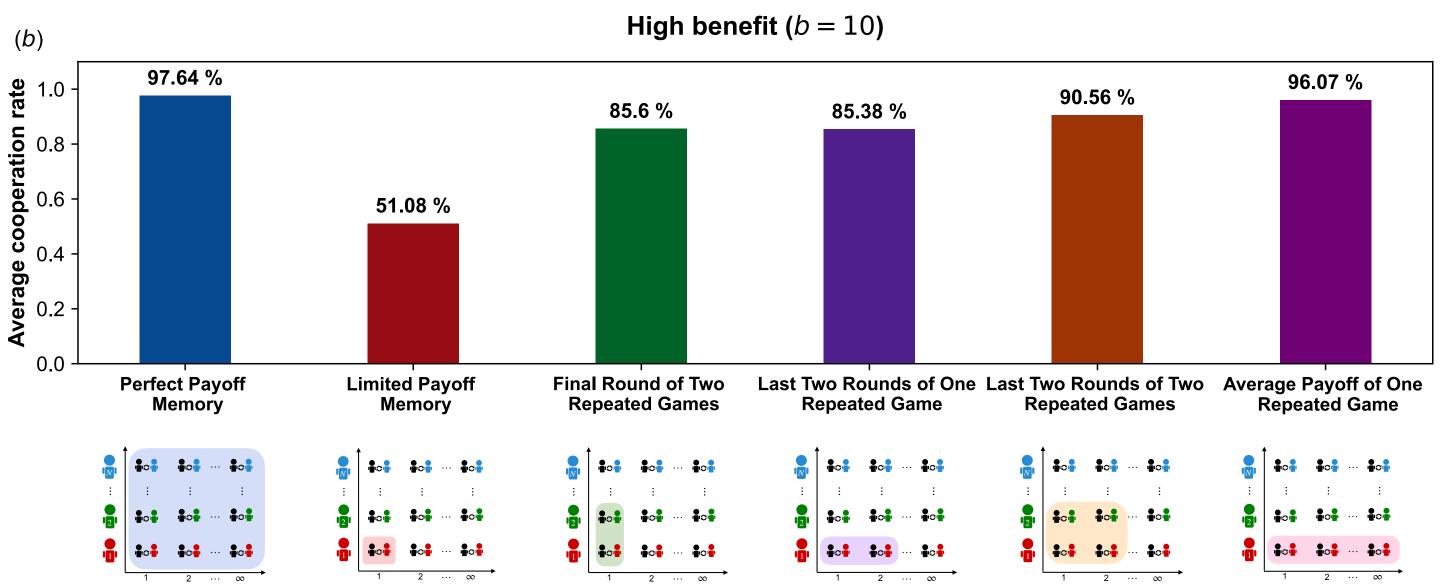
#### **Limited memory payoffs**



b=3 and c=1Low mutation  $\mu \to 0$ 







#### https://arxiv.org/abs/2311.02365

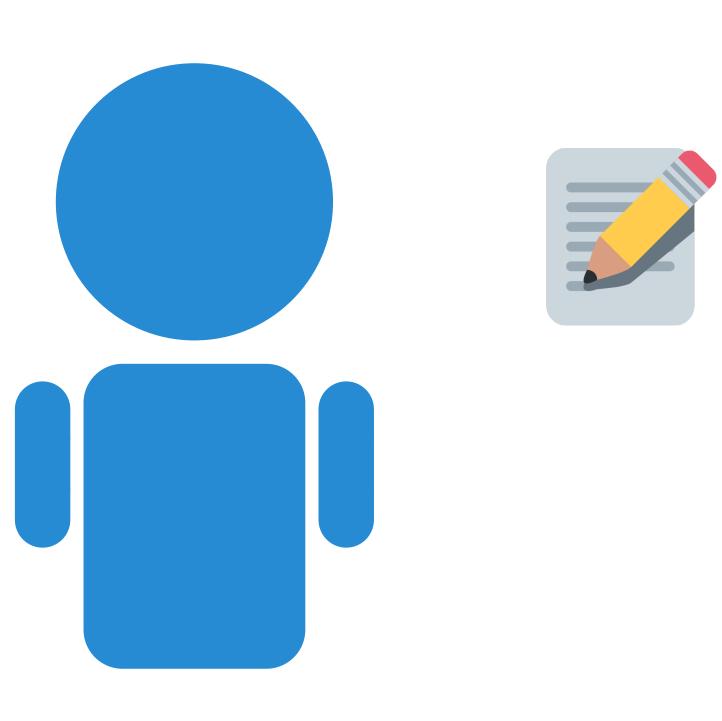
- Even with individuals considering only their last interaction, cooperation can still evolve.
- However, strategies tend to be less generous and cooperate less frequently.
- As individuals recall the payoffs of two or three recent interactions, the cooperation rates approach the classical limit.

Alex McAvoy, Christian Hilbe

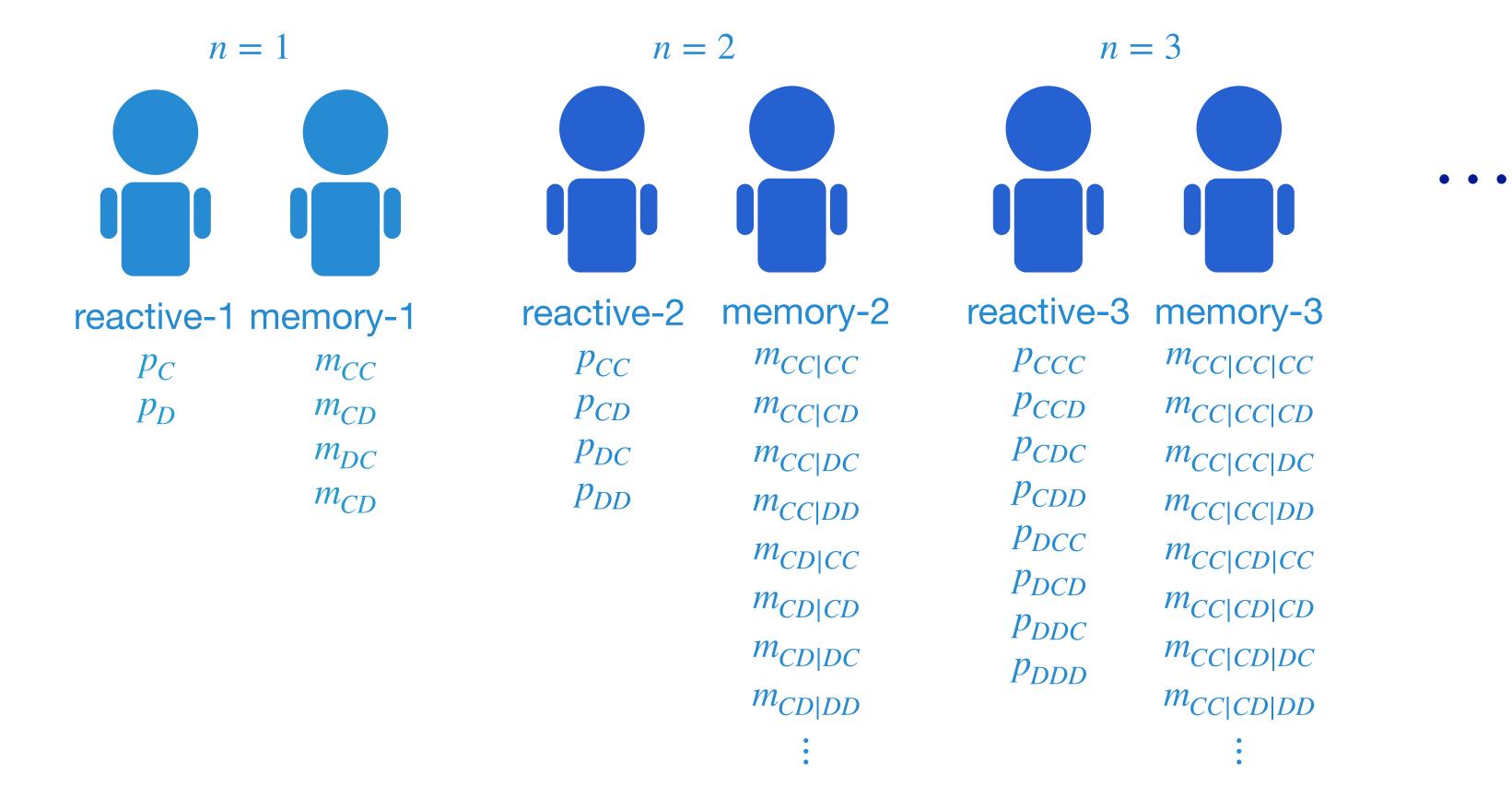
# 2. Reactive strategies with longer memory

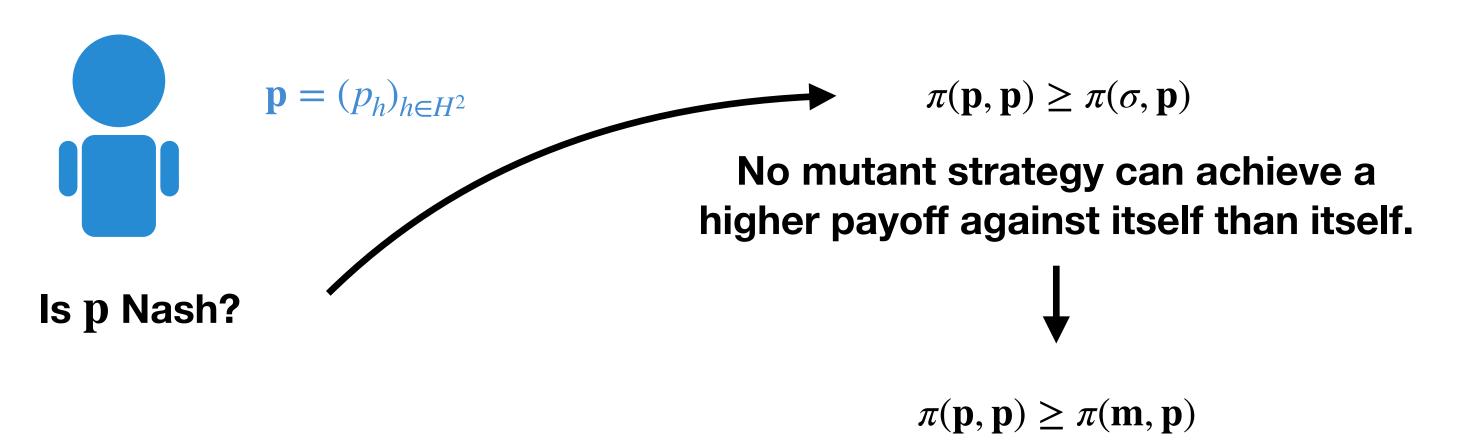
Alex McAvoy, Christian Hilbe

# 2. Reactive strategies with longer memory

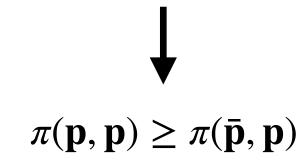




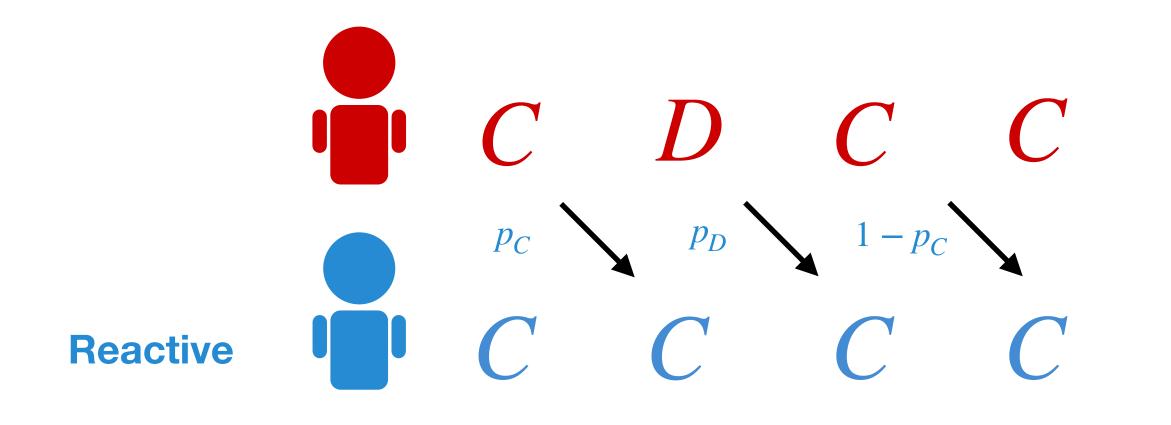


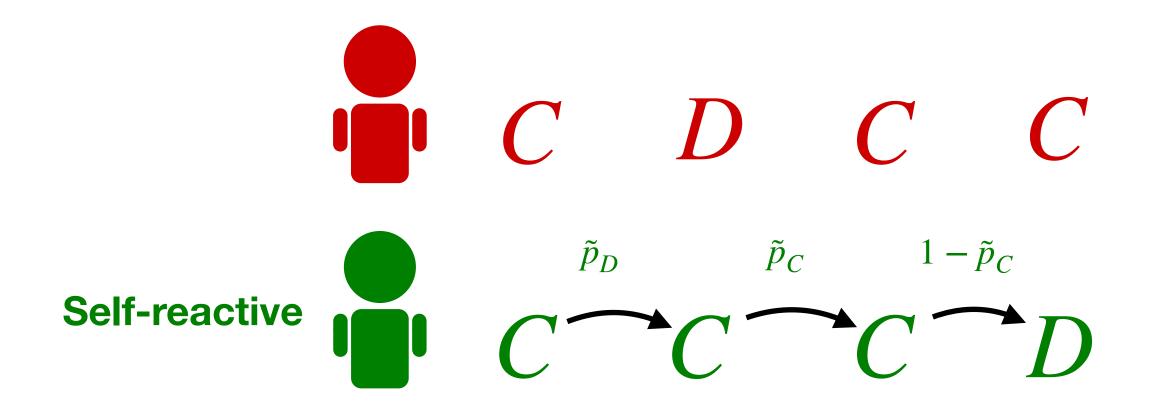


No memory-*n* mutant strategy can achieve a higher payoff against itself than itself.



No pure self-reactive—n mutant strategy can achieve a higher payoff against itself than itself.





A reactive—n strategy p, is a Nash strategy if, and only if, no pure self-reactive—n strategy can achieve a higher payoff against itself.

We use this result to characterise cooperative Nash equilibria (partners) among reactive-2 and reactive-3 strategies.

A reactive-2 strategy can be defined as the vector  $\mathbf{p}=(p_{CC},p_{CD},p_{DC},p_{DD})$ , and it is a cooperative Nash strategy if and only if, the strategy entries satisfy the conditions,

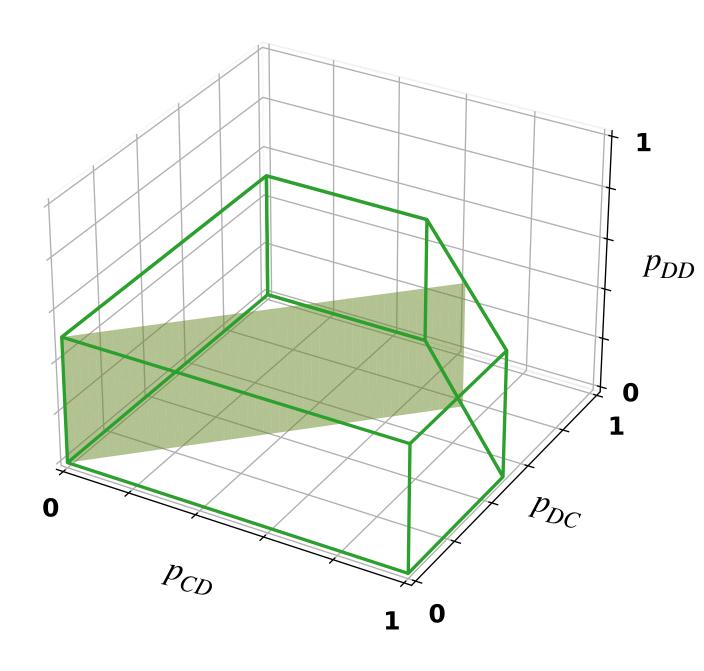
$$p_{CC} = 1,$$
  $\frac{p_{CD} + p_{DC}}{2} < 1 - \frac{1}{2} \cdot \frac{c}{b}$  and  $p_{DD} \le 1 - \frac{c}{b}$ .

A reactive-3 strategy is defined by the vector  $\mathbf{p} = (p_{CCC}, p_{CCD}, p_{CCD}, p_{CDC}, p_{DCC}, p_{DCD}, p_{DDC}, p_{DDC}, p_{DDD})$ , and it is a cooperative Nash strategy, if and only if the strategy entries satisfy the conditions,

$$\begin{aligned} p_{CCC} &= 1 \\ \frac{p_{CDC} + p_{DCD}}{2} &\leq 1 - \frac{1}{2} \cdot \frac{c}{b} \\ \frac{p_{CCD} + p_{CDC} + p_{DCC}}{3} &\leq 1 - \frac{1}{3} \cdot \frac{c}{b} \\ \frac{p_{CDD} + p_{DCD} + p_{DDC}}{3} &\leq 1 - \frac{2}{3} \cdot \frac{c}{b} \\ \frac{p_{CCD} + p_{CDD} + p_{DCC} + p_{DDC}}{4} &\leq 1 - \frac{1}{2} \cdot \frac{c}{b} \\ p_{DDD} &\leq 1 - \frac{c}{b} \end{aligned}$$

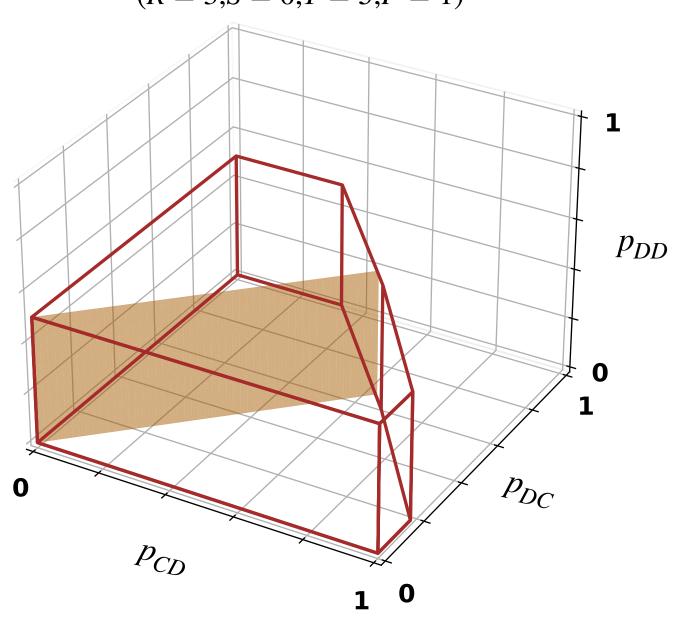
$$p_{CC} = 1$$

Donation Game (b/c = 2)



$$\begin{pmatrix} b-c & -c \\ b & 0 \end{pmatrix}$$

Axelrod's Prisoner's Dilemma (R = 3, S = 0, T = 5, P = 1)



$$\begin{pmatrix} R & S \\ T & P \end{pmatrix}$$

#### On arXiv soon

- A general algorithm to assess whether a given reactive-n strategy is a Nash equilibrium
- Explicitly characterise cooperative Nash equilibria among reactive-2 and reactive-3 strategies

- I wanted to convey that our models rely on assumptions, and it is sometimes beneficial to relax them to better understand their effects.
- We have made progress in analyzing higher-memory strategies for repeated games.

My collaborators

Alex McAvoy & Christian Hilbe & Martin Nowak

Special thank you to Ethan Akin

More information

@nikoletaglyn

http://web.evolbio.mpg.de/social-behaviour/ https://arxiv.org/abs/2311.02365

