Exploring Cognitive Constraints in Models of Direct Reciprocity

@nikoletaglyn

Direct reciprocity is a mechanism for the **emergence of cooperation** in repeated social interactions.

$$\begin{array}{ccc}
C & D \\
C & \left(b-c & -c \\
D & b & 0
\end{array}\right)$$

D C ... C

Alex McAvoy, Christian Hilbe

2. Reactive strategies with longer memory

Alex McAvoy, Christian Hilbe

2. Reactive strategies with longer memory

 μ : mutation

 $1 - \mu$: imitaton

π: updating payoffs β: strength of selection

Expected payoffs

Expected payoffs

b=3 and c=1Low mutation $\mu \to 0$

Expected payoffs

Limited memory payoffs

b=3 and c=1Low mutation $\mu \to 0$

https://arxiv.org/abs/2311.02365

- Even with individuals considering only their last interaction, cooperation can still evolve.
- However, strategies tend to be less generous and cooperate less frequently.
- As individuals recall the payoffs of two or three recent interactions, the cooperation rates approach the classical limit.

Alex McAvoy, Christian Hilbe

2. Reactive strategies with longer memory

Alex McAvoy, Christian Hilbe

2. Reactive strategies with longer memory

No memory-*n* mutant strategy can achieve a higher payoff against itself than itself.

No pure self-reactive—n mutant strategy can achieve a higher payoff against itself than itself.

A reactive—n strategy p, is a Nash strategy if, and only if, no pure self-reactive—n strategy can achieve a higher payoff against itself.

We use this result to characterise cooperative Nash equilibria (partners) among reactive-2 and reactive-3 strategies.

A reactive-2 strategy can be defined as the vector $\mathbf{p}=(p_{CC},p_{CD},p_{DC},p_{DD})$, and it is a cooperative Nash strategy if and only if, the strategy entries satisfy the conditions,

$$p_{CC} = 1,$$
 $\frac{p_{CD} + p_{DC}}{2} < 1 - \frac{1}{2} \cdot \frac{c}{b}$ and $p_{DD} \le 1 - \frac{c}{b}$.

A reactive-3 strategy is defined by the vector $\mathbf{p} = (p_{CCC}, p_{CCD}, p_{CCD}, p_{CDC}, p_{DCC}, p_{DCD}, p_{DDC}, p_{DDC}, p_{DDD})$, and it is a cooperative Nash strategy, if and only if the strategy entries satisfy the conditions,

$$\begin{aligned} p_{CCC} &= 1 \\ \frac{p_{CDC} + p_{DCD}}{2} &\leq 1 - \frac{1}{2} \cdot \frac{c}{b} \\ \frac{p_{CCD} + p_{CDC} + p_{DCC}}{3} &\leq 1 - \frac{1}{3} \cdot \frac{c}{b} \\ \frac{p_{CDD} + p_{DCD} + p_{DDC}}{3} &\leq 1 - \frac{2}{3} \cdot \frac{c}{b} \\ \frac{p_{CCD} + p_{CDD} + p_{DCC} + p_{DDC}}{4} &\leq 1 - \frac{1}{2} \cdot \frac{c}{b} \\ p_{DDD} &\leq 1 - \frac{c}{b} \end{aligned}$$

$$p_{CC} = 1$$

Donation Game (b/c = 2)

$$\begin{pmatrix} b-c & -c \\ b & 0 \end{pmatrix}$$

Axelrod's Prisoner's Dilemma (R = 3, S = 0, T = 5, P = 1)

$$\begin{pmatrix} R & S \\ T & P \end{pmatrix}$$

On arXiv soon

- A general algorithm to assess whether a given reactive-n strategy is a Nash equilibrium
- Explicitly characterise cooperative Nash equilibria among reactive-2 and reactive-3 strategies

- I wanted to convey that our models rely on assumptions, and it is sometimes beneficial to relax them to better understand their effects.
- We have made progress in analyzing higher-memory strategies for repeated games.

My collaborators

Alex McAvoy & Christian Hilbe & Martin Nowak

Special thank you to Ethan Akin

More information

@nikoletaglyn

http://web.evolbio.mpg.de/social-behaviour/ https://arxiv.org/abs/2311.02365

