Best responses in repeated games Reactive strategies with longer memory.

LEG March 2025

@nikoletaglyn.bsky.social

Nikoleta Glynatsi

Social Behavior

Understand Cooperation

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

3.

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

C

D

C

C

7

D

C

C

D

Memory-n

Memory-n

$$\mathbf{m} = (m_{\mathbf{h}})_{\mathbf{h} \in H}$$

Memory-*n*

$$\mathbf{m} = (m_{\mathbf{h}})_{\mathbf{h} \in H}$$
$$[0,1]^{2^{2n}}$$

$$[0,1]^{2^{2n}}$$

$$\mathbf{m} = (m_{\mathbf{h}})_{\mathbf{h} \in H}$$
$$[0,1]^{2^{2n}}$$

Memory-1

- [1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.
- [2] Stewart, A.J. and Plotkin, J.B., 2016. Small groups and long memories promote cooperation.

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma

contains strategies that dominate any evolutionary opponent.

Memory-1

[2] Stewart, A.J. and Plotkin, J.B., 2016. Small groups and long memories promote cooperation.

- [3] Hilbe, C., Martinez-Vaquero, L.A., Chatterjee, K. and Nowak, M.A., 2017. Memory—n strategies of direct reciprocity.
- [4] Murase, Y. and Baek, S.K., 2023. Grouping promotes both partnership and rivalry with long memory in direct reciprocity.
- [5] S Do Yi, SK Baek, JK Choi, 2017. Combination with anti-tit-for-tat remedies problems of tit-for-tat.
- [6] M Ueda, 2021. Memory-two zero-determinant strategies in repeated games.
- [7] J Li, et al., 2022. Evolution of cooperation through cumulative reciprocity.

[8] AJ Stewart, JB Plotkin, 2016. Small groups and long memories promote cooperation.

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

Reactive-*n*

A reactive-n strategy can be defined as 2^n -dimensional vector $\mathbf{p} = (p_{\mathbf{h}^{-\mathbf{i}}})_{\mathbf{h}^{-\mathbf{i}} \in H^{-\mathbf{i}}}$ with $0 \le p_{\mathbf{h}^{-\mathbf{i}}} \le 1$ where $\mathbf{h}^{-\mathbf{i}}$ refers to an n-history of the co-player from the space of all possible co-player histories.

A reactive-n strategy can be defined as 2^n -dimensional vector $\mathbf{p} = (p_{\mathbf{h}^{-\mathbf{i}}})_{\mathbf{h}^{-\mathbf{i}} \in H^{-\mathbf{i}}}$ with $0 \le p_{\mathbf{h}^{-\mathbf{i}}} \le 1$ where $\mathbf{h}^{-\mathbf{i}}$ refers to an n-history of the co-player from the space of all possible co-player histories.

Examples.

A reactive-n strategy can be defined as 2^n -dimensional vector $\mathbf{p} = (p_{\mathbf{h}^{-\mathbf{i}}})_{\mathbf{h}^{-\mathbf{i}} \in H^{-\mathbf{i}}}$ with $0 \le p_{\mathbf{h}^{-\mathbf{i}}} \le 1$ where $\mathbf{h}^{-\mathbf{i}}$ refers to an n-history of the co-player from the space of all possible co-player histories.

Examples.

A reactive-1 strategy can be defined as: $\mathbf{p} = (p_C, p_D)$

A reactive-n strategy can be defined as 2^n -dimensional vector $\mathbf{p} = (p_{\mathbf{h}^{-\mathbf{i}}})_{\mathbf{h}^{-\mathbf{i}} \in H^{-\mathbf{i}}}$ with $0 \le p_{\mathbf{h}^{-\mathbf{i}}} \le 1$ where $\mathbf{h}^{-\mathbf{i}}$ refers to an n-history of the co-player from the space of all possible co-player histories.

Examples.

A reactive-1 strategy can be defined as: $\mathbf{p} = (p_C, p_D)$

A reactive-2 strategy can be defined as: $\mathbf{p}=(p_{CC},p_{CD},p_{DC},p_{DD})$

A reactive-n strategy can be defined as 2^n -dimensional vector $\mathbf{p} = (p_{\mathbf{h}^{-\mathbf{i}}})_{\mathbf{h}^{-\mathbf{i}} \in H^{-\mathbf{i}}}$ with $0 \le p_{\mathbf{h}^{-\mathbf{i}}} \le 1$ where $\mathbf{h}^{-\mathbf{i}}$ refers to an n-history of the co-player from the space of all possible co-player histories.

Examples.

A reactive-1 strategy can be defined as: $\mathbf{p} = (p_C, p_D)$

A reactive-2 strategy can be defined as: $\mathbf{p}=(p_{CC},p_{CD},p_{DC},p_{DD})$

A reactive-3 strategy can be defined as: $\mathbf{p}=(p_{CCC},p_{CCD},p_{CCD},p_{CDC},p_{CDD},p_{DCC},p_{DCD},p_{DDC},p_{DDD})$

A reactive-*n* strategy can be defined as 2^n -dimensional vector $\mathbf{p} = (p_{\mathbf{h}-\mathbf{i}})_{\mathbf{h}-\mathbf{i} \in H^{-i}}$ with $0 \le p_{\mathbf{h}-\mathbf{i}} \le 1$ where $\mathbf{h}^{-\mathbf{i}}$ refers to an n-history of the co-player from the space of all possible co-player histories.

Examples.

A reactive-1 strategy can be defined as: $\mathbf{p} = (p_C, p_D)$

A reactive-2 strategy can be defined as: $\mathbf{p} = (p_{CC}, p_{CD}, p_{DC}, p_{DD})$ A reactive-3 strategy can be defined as: $\mathbf{p} = (p_{CCC}, p_{CCD}, p_{CCD}, p_{CDD}, p_{DCC}, p_{DCD}, p_{DDC}, p_{DDD})$

A reactive-n strategy can be defined as 2^n -dimensional vector $\mathbf{p} = (p_{\mathbf{h}-\mathbf{i}})_{\mathbf{h}-\mathbf{i} \in H^{-i}}$ with $0 \le p_{\mathbf{h}-\mathbf{i}} \le 1$ where $\mathbf{h}^{-\mathbf{i}}$ refers to an n-history of the co-player from the space of all possible co-player histories.

Examples.

A reactive-1 strategy can be defined as: $\mathbf{p} = (p_C, p_D)$

A reactive-2 strategy can be defined as: $\mathbf{p} = (p_{CC}, p_{CD}, p_{DC}, p_{DD})$ A reactive-3 strategy can be defined as: $\mathbf{p} = (p_{CCC}, p_{CCD}, p_{CCD}, p_{CDC}, p_{DCC}, p_{DCD}, p_{DCC}, p_{DDD})$

Tit for tat (1,0)

A reactive-n strategy can be defined as 2^n -dimensional vector $\mathbf{p} = (p_{\mathbf{h}^{-\mathbf{i}}})_{\mathbf{h}^{-\mathbf{i}} \in H^{-\mathbf{i}}}$ with $0 \le p_{\mathbf{h}^{-\mathbf{i}}} \le 1$ where $\mathbf{h}^{-\mathbf{i}}$ refers to an n-history of the co-player from the space of all possible co-player histories.

Examples.

A reactive-1 strategy can be defined as: $\mathbf{p} = (p_C, p_D)$

A reactive-2 strategy can be defined as: $\mathbf{p}=(p_{CC},p_{CD},p_{DC},p_{DD})$

A reactive-3 strategy can be defined as: $\mathbf{p}=(p_{CCC},p_{CCD},p_{CCD},p_{CDC},p_{CDD},p_{DCC},p_{DCD},p_{DCD},p_{DDD})$

Tit for tat (1,0)Random (1/2,1/2)

A reactive-n strategy can be defined as 2^n -dimensional vector $\mathbf{p} = (p_{\mathbf{h}^{-\mathbf{i}}})_{\mathbf{h}^{-\mathbf{i}} \in H^{-\mathbf{i}}}$ with $0 \le p_{\mathbf{h}^{-\mathbf{i}}} \le 1$ where $\mathbf{h}^{-\mathbf{i}}$ refers to an n-history of the co-player from the space of all possible co-player histories.

Examples.

A reactive-1 strategy can be defined as: $\mathbf{p} = (p_C, p_D)$

A reactive-2 strategy can be defined as: $\mathbf{p}=(p_{CC},p_{CD},p_{DC},p_{DD})$

A reactive-3 strategy can be defined as: $\mathbf{p}=(p_{CCC},p_{CCD},p_{CCD},p_{CDC},p_{CDD},p_{DCC},p_{DCD},p_{DDC},p_{DDD})$

Tit for tat (1,0)Random (1/2,1/2)Two for Two Tats (1,1,1,0)

A strategy is considered pure if all conditional cooperation probabilities are either zero or one. If all cooperation probabilities are strictly between zero and one, the strategy is described as stochastic.

A strategy is considered pure if all conditional cooperation probabilities are either zero or one. If all cooperation probabilities are strictly between zero and one, the strategy is described as stochastic.

Examples.

A strategy is considered pure if all conditional cooperation probabilities are either zero or one. If all cooperation probabilities are strictly between zero and one, the strategy is described as stochastic.

Examples.

Tit for tat $(1,0) \leftarrow$ pure Random $(1/2,1/2) \leftarrow$ stochastic Two for Two Tats $(1,1,1,0) \leftarrow$ pure

A strategy is considered pure if all conditional cooperation probabilities are either zero or one. If all cooperation probabilities are strictly between zero and one, the strategy is described as stochastic.

Examples.

Tit for tat $(1,0) \leftarrow$ pure Random $(1/2,1/2) \leftarrow$ stochastic Two for Two Tats $(1,1,1,0) \leftarrow$ pure

Nash Definition.

A strategy **p** for a repeated game is a Nash equilibrium if it is a best response to itself. That is $\pi(\mathbf{p}, \mathbf{p}) \ge \pi(\sigma, \mathbf{p})$ for all other strategies σ .

A strategy is considered pure if all conditional cooperation probabilities are either zero or one. If all cooperation probabilities are strictly between zero and one, the strategy is described as stochastic.

Examples.

Tit for tat $(1,0) \leftarrow$ pure Random $(1/2,1/2) \leftarrow$ stochastic Two for Two Tats $(1,1,1,0) \leftarrow$ pure

Nash Definition.

A strategy **p** for a repeated game is a Nash equilibrium if it is a best response to itself. That is $\pi(\mathbf{p}, \mathbf{p}) \ge \pi(\sigma, \mathbf{p})$ for all other strategies σ .

A strategy is considered pure if all conditional cooperation probabilities are either zero or one. If all cooperation probabilities are strictly between zero and one, the strategy is described as stochastic.

Examples.

Tit for tat $(1,0) \leftarrow$ pure Random $(1/2,1/2) \leftarrow$ stochastic Two for Two Tats $(1,1,1,0) \leftarrow$ pure

Nash Definition.

A strategy \mathbf{p} for a repeated game is a Nash equilibrium if it is a best response to itself.

That is $\pi(\mathbf{p}, \mathbf{p}) \ge \pi(\sigma, \mathbf{p})$ for all other strategies σ .

memory-n strategies σ .

We established the following technical results:

1. Against reactive strategies, any feasible payoff can be generated with self-reactive strategies.

We established the following technical results:

1. Against reactive strategies, any feasible payoff can be generated with self-reactive strategies.

Self-reactive-*n*

(T, S)

We established the following technical results:

1. Against reactive strategies, any feasible payoff can be generated with self-reactive strategies.

We established the following technical results:

- 1. Against reactive strategies, any feasible payoff can be generated with self-reactive strategies.
- 2. To any reactive strategy, there is a best response among the pure self-reactive strategies.

$$2^{2n} \times 2^{2n}$$

Self-reactive—n

$$2^{2n} \times 2^{2n}$$

Self-reactive—n

$$\frac{2^{2n} \times 2^{2n}}{2^n \times 2^n}$$

```
input: p,n
pure_self_reactive_strategies \leftarrow \left\{ \tilde{\mathbf{p}} \mid \tilde{\mathbf{p}} \in \{0,1\}^{2^n} \right\};
isNash \leftarrowTrue;
for \tilde{\mathbf{p}} \in pure_self_reactive_strategies do

if p is not a best response \tilde{\mathbf{p}} to then

isNash \leftarrowFalse;

return (p, isNash);
```

Donation game

$$C D$$
 $C \left(b-c-c\right)$
 $D \left(b - c - c\right)$

b > c > 0

Theorem. A reactive-2 strategy \mathbf{p} is a cooperative Nash equilibrium if and only if its entries satisfy the conditions,

$$p_{CC} = 1, \quad \frac{p_{CD} + p_{DC}}{2} \le 1 - \frac{1}{2} \cdot \frac{c}{b}, \quad p_{DD} \le 1 - \frac{c}{b}.$$

Theorem. A reactive-2 strategy \mathbf{p} is a cooperative Nash equilibrium if and only if its entries satisfy the conditions,

$$p_{CC} = 1, \quad \frac{p_{CD} + p_{DC}}{2} \le 1 - \frac{1}{2} \cdot \frac{c}{b}, \quad p_{DD} \le 1 - \frac{c}{b}.$$

Defective Nash

Defective Nash

Theorem. A reactive-2 strategy \mathbf{p} is a defective Nash equilibrium if and only if its entries satisfy the conditions,

$$p_{CC} \le \frac{c}{b} \quad \frac{p_{CD} + p_{DC}}{2} \le \frac{c}{2b}, \quad p_{DD} = 0.$$

Defective Nash

Theorem. A reactive-2 strategy \mathbf{p} is a defective Nash equilibrium if and only if its entries satisfy the conditions,

$$p_{CC} \le \frac{c}{b} \quad \frac{p_{CD} + p_{DC}}{2} \le \frac{c}{2b}, \quad p_{DD} = 0.$$

Theorem. A reactive-2 strategy \mathbf{p} is a cooperative Nash equilibrium if and only if its entries satisfy the conditions,

$$p_{CC} = 1, \quad \frac{p_{CD} + p_{DC}}{2} < 1 - \frac{1}{2} \cdot \frac{c}{b}, \quad p_{DD} \le 1 - \frac{c}{b}.$$

Cooperative Nash

Theorem. A reactive-2 strategy \mathbf{p} is a cooperative Nash equilibrium if and only if its entries satisfy the conditions,

$$p_{CC} = 1, \quad \frac{p_{CD} + p_{DC}}{2} < 1 - \frac{1}{2} \cdot \frac{c}{b}, \quad p_{DD} \le 1 - \frac{c}{b}.$$

Theorem. A reactive-3 strategy \mathbf{p} is a cooperative Nash equilibrium if and only if its entries satisfy the conditions,

$$\begin{aligned} p_{CCC} &= 1 & \frac{p_{CDC} + p_{DCD}}{2} \leq 1 - \frac{1}{2} \cdot \frac{c}{b} \\ \frac{p_{CCD} + p_{CDC} + p_{DCC}}{3} &\leq 1 - \frac{1}{3} \cdot \frac{c}{b} & \frac{p_{CDD} + p_{DCD} + p_{DDC}}{3} \leq 1 - \frac{2}{3} \cdot \frac{c}{b} \\ \frac{p_{CCD} + p_{CDD} + p_{DCC} + p_{DDC}}{4} &\leq 1 - \frac{1}{2} \cdot \frac{c}{b} & p_{DDD} \leq 1 - \frac{c}{b} \end{aligned}$$

Defective Nash

Theorem. A reactive-2 strategy \mathbf{p} is a defective Nash equilibrium if and only if its entries satisfy the conditions,

$$p_{CC} \le \frac{c}{b} \quad \frac{p_{CD} + p_{DC}}{2} \le \frac{c}{2b}, \quad p_{DD} = 0.$$

Defective Nash

Theorem. A reactive-2 strategy \mathbf{p} is a defective Nash equilibrium if and only if its entries satisfy the conditions,

$$p_{CC} \le \frac{c}{b} \quad \frac{p_{CD} + p_{DC}}{2} \le \frac{c}{2b}, \quad p_{DD} = 0.$$

Theorem. A reactive-3 strategy \mathbf{p} is a defecting Nash strategy if and only if its entries satisfy the conditions,

$$\begin{aligned} p_{CCC} & \leq \frac{c}{b}, & \frac{p_{CDC} + p_{DCD}}{2} \leq \frac{1}{2} \cdot \frac{c}{b} \\ & \frac{p_{CCD} + p_{CDC} + p_{DCC}}{3} \leq \frac{2}{3} \cdot \frac{c}{b}, & \frac{p_{CDD} + p_{DCD} + p_{DDC}}{3} \leq \frac{1}{3} \cdot \frac{c}{b} \\ & \frac{p_{CCD} + p_{CDD} + p_{DCC} + p_{DDC}}{4} \leq \frac{1}{2} \cdot \frac{c}{b}, & p_{DDD} & = 0. \end{aligned}$$

Cooperative & Defective Nash

Cooperative & Defective Nash

Cooperative & Defective Nash

Errors

Definition.

An individual who intends to cooperate instead defects with some probability ε . An individual who intends to defect instead cooperates with the same probability.

Errors

Definition.

An individual who intends to cooperate instead defects with some probability ε . An individual who intends to defect instead cooperates with the same probability.

Nash Definition.

A strategy \mathbf{p} for a repeated game is a Nash equilibrium if it is a best response to itself. That is $\pi(\mathbf{p}, \mathbf{p}) \ge \pi(\sigma, \mathbf{p})$ for all other pure self-reactive-n strategies σ .

Errors

Definition.

An individual who intends to cooperate instead defects with some probability ε . An individual who intends to defect instead cooperates with the same probability.

Nash Definition.

A strategy \mathbf{p} for a repeated game is a Nash equilibrium if it is a best response to itself. That is $\pi(\mathbf{p}, \mathbf{p}) \ge \pi(\sigma, \mathbf{p})$ for all other pure self-reactive-n strategies σ .

Reactive counting strategies

Definition.

A reactive-n counting strategy records how often the co-player has cooperated during the last n rounds.

Reactive counting strategies

Definition.

A reactive-n counting strategy records how often the co-player has cooperated during the last n rounds.

Theorem. A reactive-n counting strategy $\mathbf{r}=(r_k)_{k\in\{n,n-1,\dots,0\}}$, is a cooperative Nash equilibrium if and only if

$$r_n = 1$$
 and $r_{n-k} \le 1 - \frac{k}{n} \cdot \frac{c}{b}$ for $k \in \{1, 2, ..., n\}$.

Reactive counting strategies

Definition.

A reactive-n counting strategy records how often the co-player has cooperated during the last n rounds.

Theorem. A reactive-n counting strategy $\mathbf{r} = (r_k)_{k \in \{n, n-1, \dots, 0\}}$, is a cooperative Nash equilibrium if and only if

$$r_n = 1$$
 and $r_{n-k} \le 1 - \frac{k}{n} \cdot \frac{c}{b}$ for $k \in \{1, 2, ..., n\}$.

Theorem. A reactive-n counting strategy $\mathbf{r}=(r_k)_{k\in\{n,n-1,\dots,0\}}$, is a defective Nash equilibrium if and only if

$$r_0 = 0$$
 and $r_k \le \frac{k}{n} \cdot \frac{c}{b}$ for $k \in \{0, 1, ..., n\}$.

Av. cooperation rate

Reactive-3

Av. cooperation rate

Evolutionary Simulations with Errors

Av. cooperation rate

Evolutionary Simulations with Errors

pure_self_reactive_strategies $\leftarrow \left\{ \tilde{\mathbf{p}} \mid \tilde{\mathbf{p}} \in \{0,1\}^{2^n} \right\};$ isNash ←True; [11] Levínský R., Neyman A., Zelený M., for $\tilde{\mathbf{p}} \in pure_self_reactive_strategies$ **do** 2020. Should I remember more than you? $\textbf{if } p \text{ is not a best response } \tilde{p} \text{ to } \textbf{then}$ Best responses to factored strategies. isNash ←False; return (p, isNash);

Algorithm to verify whether a given reactive-n strategy is an equilibrium.

1.

```
input: p,n

pure_self_reactive_strategies \leftarrow \left\{ \tilde{\mathbf{p}} \mid \tilde{\mathbf{p}} \in \{0,1\}^{2^n} \right\};

isNash \leftarrowTrue;

for \tilde{\mathbf{p}} \in pure\_self\_reactive\_strategies do

if \mathbf{p} is not a best response \tilde{\mathbf{p}} to then

isNash \leftarrowFalse;

return (\mathbf{p}, \text{ isNash});

[11] Levínský R., Neyman A., Zelený M., 2020. Should I remember more than you?

Best responses to factored strategies.
```

2

Fully characterize cooperative & defective equilibria for n=2 and n=3.

Algorithm to verify whether a given reactive-n strategy is an equilibrium.

1.

input:
$$p,n$$

pure_self_reactive_strategies $\leftarrow \left\{ \tilde{\mathbf{p}} \mid \tilde{\mathbf{p}} \in \{0,1\}^{2^n} \right\};$

isNash \leftarrow True;

for $\tilde{\mathbf{p}} \in pure_self_reactive_strategies$ do

if \mathbf{p} is not a best response $\tilde{\mathbf{p}}$ to then

isNash \leftarrow False;

return $(\mathbf{p}, \text{ isNash});$

[11] Levínský R., Neyman A., Zelený M., 2020. Should I remember more than you?

Best responses to factored strategies.

2.

Fully characterize cooperative & defective equilibria for n=2 and n=3.

3.

Fully characterize cooperative & defective equilibria for any *n* for reactive counting strategies.

$$r_{n-k} \le 1 - \frac{k}{n} \cdot \frac{c}{b}$$
 for $k \in \{1, 2, ..., n\}$.

Algorithm to verify whether a given reactive-n strategy is an equilibrium.

1.

input: p,n
pure_self_reactive_strategies
$$\leftarrow \left\{ \tilde{\mathbf{p}} \mid \tilde{\mathbf{p}} \in \{0,1\}^{2^n} \right\};$$
isNash \leftarrow True;
for $\tilde{\mathbf{p}} \in pure_self_reactive_strategies$ do

if p is not a best response $\tilde{\mathbf{p}}$ to then
lisNash \leftarrow False;

return (p, isNash);

4

[11] Levínský R., Neyman A., Zelený M.,2020. Should I remember more than you?Best responses to factored strategies.

2.

Fully characterize cooperative & defective equilibria for n=2 and n=3.

3.

Fully characterize cooperative & defective equilibria for any *n* for reactive counting strategies.

$$r_{n-k} \le 1 - \frac{k}{n} \cdot \frac{c}{b}$$
 for $k \in \{1, 2, ..., n\}$.

Explore the effects of implementation errors.

Algorithm to verify whether a given reactive-n strategy is an equilibrium.

pure_self_reactive_strategies $\leftarrow \left\{ \tilde{\mathbf{p}} \mid \tilde{\mathbf{p}} \in \{0,1\}^{2^n} \right\};$ [11] Levínský R., Neyman A., Zelený M., for $\tilde{\mathbf{p}} \in pure_self_reactive_strategies$ do 2020. Should I remember more than you? $\mbox{if } p \mbox{ is not a best response } \tilde{p} \mbox{ to } \mbox{then}$ Best responses to factored strategies. isNash ←False; return (p, isNash);

Fully characterize cooperative & defective equilibria for n=2 and n = 3.

5.

Performed evolutionary simulations varying several key parameters.

Explore the effects of implementation

errors.

3.

Fully characterize cooperative & defective equilibria for any n for reactive counting strategies.

$$r_{n-k} \le 1 - \frac{k}{n} \cdot \frac{c}{b}$$
 for $k \in \{1, 2, ..., n\}$.

Algorithm to verify whether a given reactive-n strategy is an equilibrium.

pure_self_reactive_strategies $\leftarrow \left\{ \tilde{\mathbf{p}} \mid \tilde{\mathbf{p}} \in \{0,1\}^{2^n} \right\};$

for $\tilde{\mathbf{p}} \in pure_self_reactive_strategies$ do $\mbox{if } p \mbox{ is not a best response } \tilde{p} \mbox{ to } \mbox{then}$ isNash ←False;

return (p, isNash);

[11] Levínský R., Neyman A., Zelený M., 2020. Should I remember more than you? Best responses to factored strategies.

Fully characterize cooperative & defective equilibria for n=2 and n = 3.

5.

Performed evolutionary simulations varying several key parameters.

Explore the effects of implementation

errors.

3.

Fully characterize cooperative & defective equilibria for any n for reactive counting strategies.

$$r_{n-k} \le 1 - \frac{k}{n} \cdot \frac{c}{b}$$
 for $k \in \{1, 2, ..., n\}$.

6.

Longer memory helps sustain cooperation.

1. Introduction and motivation

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

Under review Economics Letters

1. Introduction and motivation

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

Under review Economics Letters

C D C

D C

- [1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.
- [12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. Conditional strategies with longer memory.

^[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.

^[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. Conditional strategies with longer memory.

^[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.

^[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. Conditional strategies with longer memory.

^[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.

^[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. Conditional strategies with longer memory.

^[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.

^[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. Conditional strategies with longer memory.

Memory-n [1] Reactive-n

Self reactive-n [12] Reactive-n

^[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.

^[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. Conditional strategies with longer memory.

Player II play as reactive-2

Player II play as self-reactive-2

Player II play as reactive-2

Player II play as self-reactive-2

1.0

Player I payoff

2.0

1.5

0.0

0.5

Player II play as self-reactive-2

(b - c)

*

actual best response

0.0 0.5 1.0 1.5 2.0 Player I payoff

Memory-n [1] Reactive-n

Self reactive-n [11], [12] Reactive-n

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.

[11] Levínský R., Neyman A., Zelený M., 2020. Should I remember more than you? Best responses to factored strategies.

[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. Conditional strategies with longer memory.

Memory-n [1]

Memory-*n*

Pure memory-n [11] Memory-n

Memory-n [1]

Reactive-*n*

Self reactive-n [11], [12] Reactive-n

^[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.

^[11] Levínský R., Neyman A., Zelený M., 2020. Should I remember more than you? Best responses to factored strategies.

^[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. Conditional strategies with longer memory.

Memory-n [1]

Memory-*n*

Pure memory-*n* [11]

Memory-*n*

Memory-n [1]

Reactive-*n*

Self reactive-n [11], [12]

Reactive-n

Pure self reactiven [11], [12]

Reactive-*n*

^[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent.

^[11] Levínský R., Neyman A., Zelený M., 2020. Should I remember more than you? Best responses to factored strategies.

^[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. Conditional strategies with longer memory.

- - b > c > 0
- 2. The opponent follows a reactive-*n* strategy.

<u> </u>	1	2	3	4	5	
pure memory-n						
pure self-reactive- n						
pure self-reactive- $(n-1)$						

$\underline{\hspace{1cm}}$	1	2	3	4	5	
pure memory-n	16					
pure self-reactive- n	4					
pure self-reactive- $(n-1)$	2					

$\underline{\hspace{1cm}}$	1	2	3	4	5	
pure memory-n	16	65,536				
pure self-reactive- n	4	16				
pure self-reactive- $(n-1)$	2	4				

n	1	2	3	4	5	
pure memory-n	16	65,536	1,844,6	74,407,370	,955,161	
pure self-reactive- n	4	16	256			
pure self-reactive- $(n-1)$	2	4	16			

n	1	2	3	4	5	
pure memory- <i>n</i>	16	65,536	1,844,6	74,4 💢 170	,955,161	
pure self-reactive-n	4	16	256	65,536		
pure self-reactive- $(n-1)$	2	4	16	256		

	1	2	3	4	5
pure memory-n	16	65,536	1,844,6	74,4 💢 370	,95: 💢 1
pure self-reactive-n	4	16	256	65,536	4,294,967,296
pure self-reactive- $(n-1)$	2	4	16	256	65,536

1. Introduction and motivation

2. Conditional cooperation with longer memory

Published PNAS: https://doi.org/10.1073/pnas.2420125121

Complete strategy spaces of direct reciprocity

Under review *PNAS*

Can I afford to remember less than you?

Under review Economics Letters

1.

Complete strategy spaces in memory-*n* strategies.

There exists a best response in pure self-reactive n-1 for additive games for any actions for non symmetric games

Best Responses

Nash Equilibria

n	1	2	3	4	5
pure memory-n	16	65,536	1,844,6	74,4 🗶 70,	,95ŧ 🗙
pure self-reactive-n	4	16	256	65,536	4,294,967,296
pure self-reactive- $(n-1)$	2	4	16	256	65,536

Evolution of Cooperation

Conditional cooperation with longer memory: https://doi.org/10.1073/pnas.242012512

@nikoletaglyn.bsky.social

Github: Nikoleta-v3

https://nikoleta-v3.github.io/

social

Thank you!

Terminal set: I = (DCC, CCC, CCD, CDC)

Payoff:
$$\pi(q, p) \stackrel{(9)}{=} \frac{1}{4} ((0.4 + 0.1 + 0.2 + 0.3)b - 3c)$$
.

Terminal sets: $I_1 = (CCC) \& I_2 = (DCC, CCD, CDC)$

Payoffs:
$$\pi(q_1, p) \stackrel{(9)}{=} 0.1b - c \& \pi(q_2, p) \stackrel{(9)}{=} \frac{1}{3} ((0.4 + 0.2 + 0.3)b - 2c)$$
.

 $D \quad C \quad C$

C

D

C

C

•

D

C

D

C

D

C

<u>C</u>

C

?

D

C

D

C

D

C

C

?

D

C

C

D

