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We established the following technical results:

1. Against reactive strategies, any feasible payoff can
be generated with self-reactive strategies.

2. To any reactive strategy, there is a best response
among the pure self-reactive strategies.
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Nash equilibria in repeated

games for any n when blue is playing as reactive-n?

input: p,n
pure self reactive strategies « {f) ‘ p E {O,l}zn};

isNash <«True;

for p € pure self reactive strategies do

if p is not a best response p to then
| isNash «False;

return (p, 1sNash);
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for p € pure self reactive strategies do
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3. reactive counting strategies.
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1. The game is additive. (b o _OC)

b>c>0

2. The opponent follows a reactive-n strategy.
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