
LEG March 2025

Best responses in repeated games
Reactive strategies with longer memory. 

@nikoletaglyn.bsky.social

Nikoleta Glynatsi





Social Behavior
Understand Cooperation



Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


(r s
t p)
C D

C
D



(r s
t p)
C D

C
D



(r s
t p)
C D

C
D



||||

(r s
t p)
C D

C
D



||||

(r s
t p)
C D

C
D



||||

(r s
t p)
C D

C
D



||||

(r s
t p)
C D

C
D



|| ||

}

C D

D C

C C C

C CD

…
1

(r s
t p)
C D

C
D

2

(r s
t p)
C D

C
D

3

(r s
t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D

n

(r s
t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

?

∞



|| ||

} …

C D

D C

C C C

C CD

…
1

(r s
t p)
C D

C
D

2

(r s
t p)
C D

C
D

3

(r s
t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D

n

(r s
t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

?

∞



|| ||

} …

Memory-n



|| ||

} …

m=(mh)h∈H

Memory-n



|| ||

} …

m=(mh)h∈H

[0,1]22n

Memory-n



|| ||

} …

m=(mh)h∈H

[0,1]22n

Memory-n



[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s Dilemma 
contains strategies that dominate any evolutionary opponent.

[2] Stewart, A.J. and Plotkin, J.B., 2016. Small groups and 
long memories promote cooperation.

Memory-1

}

|| ||

[3] Hilbe, C., Martinez-Vaquero, L.A., Chatterjee, K. and Nowak, 
M.A., 2017. Memory  strategies of direct reciprocity.−n

[4] Murase, Y. and Baek, S.K., 2023. Grouping promotes both 
partnership and rivalry with long memory in direct reciprocity.

Memory-2 Memory-3

}

|| ||

}

|| ||

[5] S Do Yi, SK Baek, JK Choi, 2017. Combination with anti-tit-
for-tat remedies problems of tit-for-tat.

[7] J Li, et al., 2022. Evolution of cooperation through cumulative 
reciprocity.

Memory-n

}
|| ||

…

[6] M Ueda, 2021. Memory-two zero-determinant strategies in 
repeated games.

[8] AJ Stewart, JB Plotkin, 2016. Small groups and long 
memories promote cooperation.



[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s Dilemma 
contains strategies that dominate any evolutionary opponent.

[2] Stewart, A.J. and Plotkin, J.B., 2016. Small groups and 
long memories promote cooperation.

Memory-1

}

|| ||

[3] Hilbe, C., Martinez-Vaquero, L.A., Chatterjee, K. and Nowak, 
M.A., 2017. Memory  strategies of direct reciprocity.−n

[4] Murase, Y. and Baek, S.K., 2023. Grouping promotes both 
partnership and rivalry with long memory in direct reciprocity.

Memory-2 Memory-3

}

|| ||

}

|| ||

[5] S Do Yi, SK Baek, JK Choi, 2017. Combination with anti-tit-
for-tat remedies problems of tit-for-tat.

[7] J Li, et al., 2022. Evolution of cooperation through cumulative 
reciprocity.

Memory-n

}
|| ||

…

[6] M Ueda, 2021. Memory-two zero-determinant strategies in 
repeated games.

[8] AJ Stewart, JB Plotkin, 2016. Small groups and long 
memories promote cooperation.



Can we say anything about Nash equilibria in repeated 
games for any ?n

Memory-n

} …

||||
1 C D 2 3 n − 1 n n + 1

C D

D C

C C C

C CD

…(r s
t p)C

D (r s
t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D

?



Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


Can we say anything about Nash equilibria in repeated 
games for any ?n

Memory-n

} …

||||
1 C D 2 3 n − 1 n n + 1

C D

D C

C C C

C CD

…(r s
t p)C

D (r s
t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D

?



Can we say anything about Nash equilibria in repeated 
games for any ?n

Memory-n

} …

||||
1 C D 2 3 n − 1 n n + 1

C D

D C

C C C

C CD

…(r s
t p)C

D (r s
t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D

?

Yes 



Can we say anything about Nash equilibria in repeated 
games for any ?n

Memory-n

} …

||||
1 C D 2 3 n − 1 n n + 1

C D

D C

C C C

C CD

…(r s
t p)C

D (r s
t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D

?

Reactive-n

} …

||||
1 C D 2 3 n − 1 n n + 1

C D

D C

C C C

C CD

…(r s
t p)C

D (r s
t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D

?

Yes 



A reactive-  strategy can be defined as -dimensional vector   with  
where  refers to an -history of the co-player from the space of all possible co-player histories.

n 2n p=(ph−i)h−i∈H−i 0≤ph−i ≤1
h−i n

Definitions.



A reactive-  strategy can be defined as -dimensional vector   with  
where  refers to an -history of the co-player from the space of all possible co-player histories.

n 2n p=(ph−i)h−i∈H−i 0≤ph−i ≤1
h−i n

Definitions.

Examples.



A reactive-  strategy can be defined as -dimensional vector   with  
where  refers to an -history of the co-player from the space of all possible co-player histories.

n 2n p=(ph−i)h−i∈H−i 0≤ph−i ≤1
h−i n

Definitions.

A reactive-  strategy can be defined as: 1 p = (pC, pD)
Examples.



A reactive-  strategy can be defined as -dimensional vector   with  
where  refers to an -history of the co-player from the space of all possible co-player histories.

n 2n p=(ph−i)h−i∈H−i 0≤ph−i ≤1
h−i n

Definitions.

A reactive-  strategy can be defined as: 1 p = (pC, pD)
A reactive-  strategy can be defined as: 2 p = (pCC, pCD, pDC, pDD)

Examples.



A reactive-  strategy can be defined as -dimensional vector   with  
where  refers to an -history of the co-player from the space of all possible co-player histories.

n 2n p=(ph−i)h−i∈H−i 0≤ph−i ≤1
h−i n

Definitions.

A reactive-  strategy can be defined as: 1 p = (pC, pD)
A reactive-  strategy can be defined as: 2 p = (pCC, pCD, pDC, pDD)
A reactive-  strategy can be defined as: 3 p = (pCCC, pCCD, pCDC, pCDD, pDCC, pDCD, pDDC, pDDD)

Examples.



A reactive-  strategy can be defined as -dimensional vector   with  
where  refers to an -history of the co-player from the space of all possible co-player histories.

n 2n p=(ph−i)h−i∈H−i 0≤ph−i ≤1
h−i n

Definitions.

A reactive-  strategy can be defined as: 1 p = (pC, pD)
A reactive-  strategy can be defined as: 2 p = (pCC, pCD, pDC, pDD)
A reactive-  strategy can be defined as: 3 p = (pCCC, pCCD, pCDC, pCDD, pDCC, pDCD, pDDC, pDDD)

Examples.



A reactive-  strategy can be defined as -dimensional vector   with  
where  refers to an -history of the co-player from the space of all possible co-player histories.

n 2n p=(ph−i)h−i∈H−i 0≤ph−i ≤1
h−i n

Tit for tat (1,0)

Definitions.

A reactive-  strategy can be defined as: 1 p = (pC, pD)
A reactive-  strategy can be defined as: 2 p = (pCC, pCD, pDC, pDD)
A reactive-  strategy can be defined as: 3 p = (pCCC, pCCD, pCDC, pCDD, pDCC, pDCD, pDDC, pDDD)

Examples.



A reactive-  strategy can be defined as -dimensional vector   with  
where  refers to an -history of the co-player from the space of all possible co-player histories.

n 2n p=(ph−i)h−i∈H−i 0≤ph−i ≤1
h−i n

Tit for tat (1,0)
Random (1/2,1/2)

Definitions.

A reactive-  strategy can be defined as: 1 p = (pC, pD)
A reactive-  strategy can be defined as: 2 p = (pCC, pCD, pDC, pDD)
A reactive-  strategy can be defined as: 3 p = (pCCC, pCCD, pCDC, pCDD, pDCC, pDCD, pDDC, pDDD)

Examples.



A reactive-  strategy can be defined as -dimensional vector   with  
where  refers to an -history of the co-player from the space of all possible co-player histories.

n 2n p=(ph−i)h−i∈H−i 0≤ph−i ≤1
h−i n

Tit for tat (1,0)
Random (1/2,1/2)
Two for Two Tats (1,1,1,0)

Definitions.

A reactive-  strategy can be defined as: 1 p = (pC, pD)
A reactive-  strategy can be defined as: 2 p = (pCC, pCD, pDC, pDD)
A reactive-  strategy can be defined as: 3 p = (pCCC, pCCD, pCDC, pCDD, pDCC, pDCD, pDDC, pDDD)

Examples.



Definitions.
A strategy is considered pure if all conditional cooperation probabilities are either zero 
or one. If all cooperation probabilities are strictly between zero and one, the strategy 
is described as stochastic.



Definitions.

Examples.

A strategy is considered pure if all conditional cooperation probabilities are either zero 
or one. If all cooperation probabilities are strictly between zero and one, the strategy 
is described as stochastic.



Definitions.

Examples.

A strategy is considered pure if all conditional cooperation probabilities are either zero 
or one. If all cooperation probabilities are strictly between zero and one, the strategy 
is described as stochastic.

Tit for tat   pure
Random stochastic
Two for Two Tats pure

(1,0) ←
(1/2,1/2) ←

(1,1,1,0) ←



Definitions.

Examples.

A strategy is considered pure if all conditional cooperation probabilities are either zero 
or one. If all cooperation probabilities are strictly between zero and one, the strategy 
is described as stochastic.

Tit for tat   pure
Random stochastic
Two for Two Tats pure

(1,0) ←
(1/2,1/2) ←

(1,1,1,0) ←

Nash Definition.
A strategy  for a repeated game is a Nash equilibrium if it is a best response to itself.  
That is 

p
π(p, p)≥π(σ, p) for all other strategies σ .



p



p



Definitions.

Examples.

A strategy is considered pure if all conditional cooperation probabilities are either zero 
or one. If all cooperation probabilities are strictly between zero and one, the strategy 
is described as stochastic.

Tit for tat   pure
Random stochastic
Two for Two Tats pure

(1,0) ←
(1/2,1/2) ←

(1,1,1,0) ←

Nash Definition.
A strategy  for a repeated game is a Nash equilibrium if it is a best response to itself.  
That is 

p
π(p, p)≥π(σ, p) for all other strategies σ .



Definitions.

Examples.

A strategy is considered pure if all conditional cooperation probabilities are either zero 
or one. If all cooperation probabilities are strictly between zero and one, the strategy 
is described as stochastic.

Tit for tat   pure
Random stochastic
Two for Two Tats pure

(1,0) ←
(1/2,1/2) ←

(1,1,1,0) ←

Nash Definition.
A strategy  for a repeated game is a Nash equilibrium if it is a best response to itself.  
That is 

p
π(p, p)≥π(σ, p) for all other strategies σ .

memory-n strategies σ .

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.



p



Nash equilibria in repeated 
games for any  when blue is playing as reactive- ?n n



Nash equilibria in repeated 
games for any  when blue is playing as reactive- ?n n

We established the following technical results:

1. Against reactive strategies, any feasible payoff can 
be generated with self-reactive strategies. 

2. To any reactive strategy, there is a best response 
among the pure self-reactive strategies. 

3. We can calculate payoffs more efficiently.



Nash equilibria in repeated 
games for any  when blue is playing as reactive- ?n n

We established the following technical results:

1. Against reactive strategies, any feasible payoff can 
be generated with self-reactive strategies. 

2. To any reactive strategy, there is a best response 
among the pure self-reactive strategies. 

3. We can calculate payoffs more efficiently.

Self-reactive-n

} …

||||
1 C D 2 3 n − 1 n n + 1

C D

D C

C C C

C CD

…(r s
t p)C

D (r s
t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D

?





We established the following technical results:

1. Against reactive strategies, any feasible payoff can 
be generated with self-reactive strategies. 

2. To any reactive strategy, there is a best response 
among the pure self-reactive strategies. 

3. We can calculate payoffs more efficiently.

Nash equilibria in repeated 
games for any  when blue is playing as reactive- ?n n



We established the following technical results:

1. Against reactive strategies, any feasible payoff can 
be generated with self-reactive strategies. 

2. To any reactive strategy, there is a best response 
among the pure self-reactive strategies. 

3. We can calculate payoffs more efficiently.

Nash equilibria in repeated 
games for any  when blue is playing as reactive- ?n n



Theorem. A reactive strategy  is a Nash equilibrium if and 
only if  for all pure self-reactive strategies .

p∈ℛn
π(p, p)≥π(p̃, p) p̃



Theorem. A reactive strategy  is a Nash equilibrium if and 
only if  for all pure self-reactive strategies .

p∈ℛn
π(p, p)≥π(p̃, p) p̃



Theorem. A reactive strategy  is a Nash equilibrium if and 
only if  for all pure self-reactive strategies .

p∈ℛn
π(p, p)≥π(p̃, p) p̃

p = (pC, pD) 4



Theorem. A reactive strategy  is a Nash equilibrium if and 
only if  for all pure self-reactive strategies .

p∈ℛn
π(p, p)≥π(p̃, p) p̃

p = (pC, pD) 4p = (pCC, pCD, pDC, pDD) 16



Theorem. A reactive strategy  is a Nash equilibrium if and 
only if  for all pure self-reactive strategies .

p∈ℛn
π(p, p)≥π(p̃, p) p̃

p = (pC, pD) 4p = (pCC, pCD, pDC, pDD) 16p = (pCCC, pCCD, pCDC, pCDD, pDCC, pDCD, pDDC, pDDD) 256



Memory-n

Reactive-n [ [22n × 22n



Memory-n

Reactive-n [ [22n × 22n

Self-reactive—n



Memory-n

Reactive-n [ [22n × 22n

Self-reactive—n

2n × 2n



Nash equilibria in repeated 
games for any  when blue is playing as reactive- ?n n



Donation game

(b − c −c
b 0 )
C D

C
D

b > c > 0



Cooperative Nash



Theorem. A reactive-2 strategy  is a cooperative Nash equilibrium if and 
only if its entries satisfy the conditions,

p

pCC = 1,
pCD + pDC

2
≤ 1 −

1
2

⋅
c
b

, pDD ≤ 1−
c
b

.

Cooperative Nash



Theorem. A reactive-2 strategy  is a cooperative Nash equilibrium if and 
only if its entries satisfy the conditions,

p

pCC = 1,
pCD + pDC

2
≤ 1 −

1
2

⋅
c
b

, pDD ≤ 1−
c
b

.

Cooperative Nash



Defective Nash



Theorem. A reactive-2 strategy  is a defective Nash equilibrium if and only if 
its entries satisfy the conditions,

p

pCC ≤
c
b

pCD+pDC

2
≤

c
2b

, pDD = 0.

Defective Nash



Theorem. A reactive-2 strategy  is a defective Nash equilibrium if and only if 
its entries satisfy the conditions,

p

pCC ≤
c
b

pCD+pDC

2
≤

c
2b

, pDD = 0.

Defective Nash



Theorem. A reactive-2 strategy  is a cooperative Nash equilibrium if and 
only if its entries satisfy the conditions,

p

pCC = 1,
pCD + pDC

2
< 1 −

1
2

⋅
c
b

, pDD ≤ 1−
c
b

.

Cooperative Nash



Theorem. A reactive-2 strategy  is a cooperative Nash equilibrium if and 
only if its entries satisfy the conditions,

p

pCC = 1,
pCD + pDC

2
< 1 −

1
2

⋅
c
b

, pDD ≤ 1−
c
b

.

Cooperative Nash

Theorem. A reactive-3 strategy  is a cooperative Nash equilibrium if and 
only if its entries satisfy the conditions,

p

pCCC = 1
pCDC + pDCD

2
≤ 1 −

1
2

⋅
c
b

pCCD + pCDC + pDCC

3
≤ 1 −

1
3

⋅
c
b

pCDD + pDCD + pDDC

3
≤ 1 −

2
3

⋅
c
b

pCCD + pCDD + pDCC + pDDC

4
≤ 1 −

1
2

⋅
c
b

pDDD ≤ 1−
c
b



Theorem. A reactive-2 strategy  is a defective Nash equilibrium if and only if 
its entries satisfy the conditions,

p

pCC ≤
c
b

pCD+pDC

2
≤

c
2b

, pDD = 0.

Defective Nash



Theorem. A reactive-2 strategy  is a defective Nash equilibrium if and only if 
its entries satisfy the conditions,

p

pCC ≤
c
b

pCD+pDC

2
≤

c
2b

, pDD = 0.

Theorem. A reactive-3 strategy  is a defecting Nash strategy if and only if its 
entries satisfy the conditions, 

p

pCCC ≤
c
b

,
pCDC + pDCD

2
≤

1
2

⋅
c
b

pCCD + pCDC + pDCC

3
≤

2
3

⋅
c
b

,
pCDD + pDCD + pDDC

3
≤

1
3

⋅
c
b

pCCD + pCDD + pDCC + pDDC

4
≤

1
2

⋅
c
b

, pDDD = 0.

Defective Nash









Cooperative & Defective Nash

c/b = 0.5



Cooperative & Defective Nash

c/b = 0.5



Cooperative & Defective Nash

c/b = 0.5



Errors
Definition.

An individual who intends to cooperate instead defects with some probability . An 
individual who intends to defect instead cooperates with the same probability. 

ε



Errors

Nash Definition.
A strategy  for a repeated game is a Nash equilibrium if it is a best response to itself.  
That is 

p
π(p, p)≥π(σ, p) for all other pure self-reactive-n strategies σ .

Definition.
An individual who intends to cooperate instead defects with some probability . An 
individual who intends to defect instead cooperates with the same probability. 

ε



Errors

Nash Definition.
A strategy  for a repeated game is a Nash equilibrium if it is a best response to itself.  
That is 

p
π(p, p)≥π(σ, p) for all other pure self-reactive-n strategies σ .

Definition.
An individual who intends to cooperate instead defects with some probability . An 
individual who intends to defect instead cooperates with the same probability. 

ε



Reactive counting strategies

A reactive-  counting strategy records how often the co-player has cooperated 
during the last  rounds.

n
n

Definition.



Reactive counting strategies

A reactive-  counting strategy records how often the co-player has cooperated 
during the last  rounds.

n
n

Theorem. A reactive-  counting strategy , is a 
cooperative Nash equilibrium if and only if

n r=(rk)k∈{n,n−1,…,0}

rn =1 and rn−k ≤ 1−
k
n

⋅
c
b

for  k ∈ {1,2,…, n} .

Definition.



Reactive counting strategies

A reactive-  counting strategy records how often the co-player has cooperated 
during the last  rounds.

n
n

Theorem. A reactive-  counting strategy , is a 
cooperative Nash equilibrium if and only if

n r=(rk)k∈{n,n−1,…,0}

rn =1 and rn−k ≤ 1−
k
n

⋅
c
b

for  k ∈ {1,2,…, n} .

Theorem. A reactive-  counting strategy , is a defective 
Nash equilibrium if and only if 

n r=(rk)k∈{n,n−1,…,0}

r0 =0 and rk ≤
k
n

⋅
c
b

for  k ∈ {0,1,…, n} .

Definition.



Evolutionary Simulations



Reactive−1

}

Evolutionary Simulations



Av. 
cooperation 

rate

Reactive−1

}

Evolutionary Simulations



Av. 
cooperation 

rate

Reactive−1

}

Reactive−2

}

Reactive−3

}

Evolutionary Simulations



!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

Av
. c

oo
pe

ra
tio

n 
ra

te

Ab
un

da
nc

e 
of

 g
oo

d 
N

as
h 

eq
ui

lib
ria

 
st

ra
te

gi
es

cost of cooperation  c

Evolutionary Simulations



Evolutionary Simulations with 
Errors



Av. 
cooperation 

rate

Reactive  counting−1

}

Reactive  counting−2

}

Reactive  counting−3

}

Evolutionary Simulations



!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

Av
. c

oo
pe

ra
tio

n 
ra

te

Ab
un

da
nc

e 
of

 g
oo

d 
N

as
h 

eq
ui

lib
ria

 
st

ra
te

gi
es

cost of cooperation  c

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

Evolutionary Simulations



Evolutionary Simulations with 
Errors



1.
Algorithm to verify whether a given 

reactive-  strategy is an equilibrium. n

2.
Fully characterize cooperative & 
defective equilibria for  and 

.
n = 2

n = 3

} } }

3.
Fully characterize cooperative & 
defective equilibria for any  for 

reactive counting strategies.
n

rn−k ≤ 1−
k
n

⋅
c
b

for  k ∈ {1,2,…, n} .

Longer memory helps 
sustain cooperation.

4.
Explore the effects of implementation

errors.

5.

6.

Performed evolutionary simulations
varying several key parameters. 

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

[11] Levínský R., Neyman A., Zelený M., 
2020. Should I remember more than you? 
Best responses to factored strategies.



1.
Algorithm to verify whether a given 

reactive-  strategy is an equilibrium. n

2.
Fully characterize cooperative & 
defective equilibria for  and 

.
n = 2

n = 3

} } }

3.
Fully characterize cooperative & 
defective equilibria for any  for 

reactive counting strategies.
n

rn−k ≤ 1−
k
n

⋅
c
b

for  k ∈ {1,2,…, n} .

Longer memory helps 
sustain cooperation.

4.
Explore the effects of implementation

errors.

5.

6.

Performed evolutionary simulations
varying several key parameters. 

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

[11] Levínský R., Neyman A., Zelený M., 
2020. Should I remember more than you? 
Best responses to factored strategies.



1.
Algorithm to verify whether a given 

reactive-  strategy is an equilibrium. n

2.
Fully characterize cooperative & 
defective equilibria for  and 

.
n = 2

n = 3

} } }

3.
Fully characterize cooperative & 
defective equilibria for any  for 

reactive counting strategies.
n

rn−k ≤ 1−
k
n

⋅
c
b

for  k ∈ {1,2,…, n} .

Longer memory helps 
sustain cooperation.

4.
Explore the effects of implementation

errors.

5.

6.

Performed evolutionary simulations
varying several key parameters. 

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

[11] Levínský R., Neyman A., Zelený M., 
2020. Should I remember more than you? 
Best responses to factored strategies.



1.
Algorithm to verify whether a given 

reactive-  strategy is an equilibrium. n

2.
Fully characterize cooperative & 
defective equilibria for  and 

.
n = 2

n = 3

} } }

3.
Fully characterize cooperative & 
defective equilibria for any  for 

reactive counting strategies.
n

rn−k ≤ 1−
k
n

⋅
c
b

for  k ∈ {1,2,…, n} .

Longer memory helps 
sustain cooperation.

4.
Explore the effects of implementation

errors.

5.

6.

Performed evolutionary simulations
varying several key parameters. 

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

[11] Levínský R., Neyman A., Zelený M., 
2020. Should I remember more than you? 
Best responses to factored strategies.



1.
Algorithm to verify whether a given 

reactive-  strategy is an equilibrium. n

2.
Fully characterize cooperative & 
defective equilibria for  and 

.
n = 2

n = 3

} } }

3.
Fully characterize cooperative & 
defective equilibria for any  for 

reactive counting strategies.
n

rn−k ≤ 1−
k
n

⋅
c
b

for  k ∈ {1,2,…, n} .

Longer memory helps 
sustain cooperation.

4.
Explore the effects of implementation

errors.

5.

6.

Performed evolutionary simulations
varying several key parameters. 

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

[11] Levínský R., Neyman A., Zelený M., 
2020. Should I remember more than you? 
Best responses to factored strategies.



1.
Algorithm to verify whether a given 

reactive-  strategy is an equilibrium. n

2.
Fully characterize cooperative & 
defective equilibria for  and 

.
n = 2

n = 3

} } }

3.
Fully characterize cooperative & 
defective equilibria for any  for 

reactive counting strategies.
n

rn−k ≤ 1−
k
n

⋅
c
b

for  k ∈ {1,2,…, n} .

Longer memory helps 
sustain cooperation.

4.
Explore the effects of implementation

errors.

5.

6.

Performed evolutionary simulations
varying several key parameters. 

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

!

"

#

$

Most Abundant Strategies

R
ea

ct
iv

e 
St

ra
te

gi
es

R
ea

ct
iv

e 
C

ou
nt

in
g 

St
ra

te
gi

es

Dependence on Parameters

[11] Levínský R., Neyman A., Zelený M., 
2020. Should I remember more than you? 
Best responses to factored strategies.



Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


C D

D C

C C C

C CD

…
1

(r s
t p)
C D

C
D

2

(r s
t p)
C D

C
D

3

(r s
t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D

n

(r s
t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

?

∞



| |

}

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.

[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. 
Conditional strategies with longer memory.



| |

}

Memory-n

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.

[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. 
Conditional strategies with longer memory.



| |

}

Memory-nMemory-  n [1]

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.

[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. 
Conditional strategies with longer memory.



| |

}

Memory-n

Reactive-n

Memory-  n [1]

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.

[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. 
Conditional strategies with longer memory.



| |

}

Memory-n

Memory-  n [1] Reactive-n

Memory-  n [1]

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.

[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. 
Conditional strategies with longer memory.



| |

}

Memory-n

Memory-  n [1] Reactive-n

Memory-  n [1]

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.

Self reactive-  n [12] Reactive-n

[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. 
Conditional strategies with longer memory.



Complete strategy spaces



Complete strategy spaces



Complete strategy spaces



Complete strategy spaces



| |

}

| |

}

Memory-n

Memory-  n [1] Reactive-n

Memory-  n [1]

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.
[11] Levínský R., Neyman A., Zelený M., 2020. Should I 
remember more than you? Best responses to factored 
strategies.
[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. 
Conditional strategies with longer memory.

Self reactive-  n [11], [12] Reactive-n



| |

}

| |

}

Memory-n

Memory-  n [1] Reactive-n

Memory-  n [1]

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.

Memory-nPure memory-   n [11]

[11] Levínský R., Neyman A., Zelený M., 2020. Should I 
remember more than you? Best responses to factored 
strategies.
[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. 
Conditional strategies with longer memory.

Self reactive-  n [11], [12] Reactive-n



| |

}

| |

}

Memory-n

Memory-  n [1] Reactive-n

Memory-  n [1]

[1] Press, W.H. and Dyson, F.J., 2012. Iterated Prisoner’s 
Dilemma contains strategies that dominate any 
evolutionary opponent.

Memory-nPure memory-   n [11]

[11] Levínský R., Neyman A., Zelený M., 2020. Should I 
remember more than you? Best responses to factored 
strategies.
[12] Glynatsi N.E., Akin E., Nowak M.A., Hilbe C. 2024. 
Conditional strategies with longer memory.

Self reactive-  n [11], [12] Reactive-n
Pure self reactive-

 n [11], [12] Reactive-n



Should I remember more than you?

Can I afford to remember less than you?



Should I remember more than you?

Can I afford to remember less than you?

No



Should I remember more than you?

Can I afford to remember less than you?
Yes

No



Should I remember more than you?

Can I afford to remember less than you?
Yes

1. The game is additive.

2. The opponent follows a reactive-  strategy. n

(b − c −c
b 0 )
C D

C
D

b > c > 0

No



Theorem. Let  (be a reactive-  strategy) and the game be 
additive. Then there exists  in the set of pure self-reactive-

 strategies that is a best response.

p∈ℛn n
p̃

(n − 1)



Theorem. Let  (be a reactive-  strategy) and the game be 
additive. Then there exists  in the set of pure self-reactive-

 strategies that is a best response.

p∈ℛn n
p̃

(n − 1)

Number of equations to be checked.

n
pure memory-n

pure self-reactive-n

pure self-reactive-(n − 1)

1 2 3 4 5



Theorem. Let  (be a reactive-  strategy) and the game be 
additive. Then there exists  in the set of pure self-reactive-

 strategies that is a best response.

p∈ℛn n
p̃

(n − 1)

16

4

2

Number of equations to be checked.

n
pure memory-n

pure self-reactive-n

pure self-reactive-(n − 1)

1 2 3 4 5



Theorem. Let  (be a reactive-  strategy) and the game be 
additive. Then there exists  in the set of pure self-reactive-

 strategies that is a best response.

p∈ℛn n
p̃

(n − 1)

16

4

2

65,536

16

4

Number of equations to be checked.

n
pure memory-n

pure self-reactive-n

pure self-reactive-(n − 1)

1 2 3 4 5



Theorem. Let  (be a reactive-  strategy) and the game be 
additive. Then there exists  in the set of pure self-reactive-

 strategies that is a best response.

p∈ℛn n
p̃

(n − 1)

16

4

2

65,536

16

4

Number of equations to be checked.

n
pure memory-n

pure self-reactive-n

pure self-reactive-(n − 1)

1 2 3 4 5
1,844,674,407,370,955,161

256

16



Theorem. Let  (be a reactive-  strategy) and the game be 
additive. Then there exists  in the set of pure self-reactive-

 strategies that is a best response.

p∈ℛn n
p̃

(n − 1)

16

4

2

65,536

16

4

Number of equations to be checked.

n
pure memory-n

pure self-reactive-n

pure self-reactive-(n − 1)

1 2 3 4 5
1,844,674,407,370,955,161

256

16

65,536

256



Theorem. Let  (be a reactive-  strategy) and the game be 
additive. Then there exists  in the set of pure self-reactive-

 strategies that is a best response.

p∈ℛn n
p̃

(n − 1)

16

4

2

65,536

16

4

Number of equations to be checked.

n
pure memory-n

pure self-reactive-n

pure self-reactive-(n − 1)

1 2 3 4 5
1,844,674,407,370,955,161

256

16

65,536

256 65,536

4,294,967,296



Introduction and motivation1.

Conditional cooperation with longer memory2.

Published PNAS: https://doi.org/10.1073/pnas.2420125121 

Can I afford to remember 
less than you?3.
Under review 
Economics Letters

Complete strategy spaces 
of direct reciprocity

Under review 
PNAS

https://doi.org/10.1073/pnas.2420125121


2.
There exists a best response in pure 

self-reactive  for additive games
for any actions for non symmetric 

games  

n − 1
1.

Complete strategy spaces in
memory-  strategies. n

DCCDDCDDD

CCC

CCD

CDC

C C

C D

CC

pCCC=0.1

pCCD=0.2

pCDC=0.3

pDCC=0.4

 Terminal set: I = (DCC, CCC, CCD, CDC)

 Payoff: π(q, p) (9)= 1
4 ((0.4 + 0.1 + 0.2 + 0.3)b − 3c) .

(c) (d)

DCCDDCDDD

CCC

CCD

CDC

C C D

CC

C

pCCC=0.1

pCCD=0.2

pCDC=0.3

pDCC=0.4

 Terminal sets: I1 = (CCC) & I2 = (DCC, CCD, CDC)

 Payoffs: π(q1, p) (9)= 0.1b − c & π(q2, p) (9)= 1
3 ((0.4 + 0.2 + 0.3)b − 2c) .

(a)

 p(h) =

0.4 for h = DCC,
0.3 for h = CDC,
0.2 for h = CCD,
0.1 for h = CCC,
0 else.

 q(h) =

1 for h = DCC,
1 for h = CDC,
1 for h = CCD,
0 for h = CCC,
1 for h = DDD,
1 for h = DDC
0 else.

 (b − c −c
b 0 )
 with b > c

(b)C D
C
D



Best 
Responses Nash Equilibria Evolution of 

Cooperation

@nikoletaglyn.bsky.social

https://nikoleta-v3.github.io/

Conditional cooperation with longer memory:
https://doi.org/10.1073/pnas.242012512

Github: Nikoleta-v3

philiplaporte.g
ithub.io/

franzilesi.bsky.
social

Thank you!

C D

D C

C C C

C CD

…(r s
t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D (r s

t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

?

∞

https://doi.org/10.1073/pnas.242012512


DCCDDCDDD

CCC

CCD

CDC

C C

C D

CC

pCCC=0.1

pCCD=0.2

pCDC=0.3

pDCC=0.4

 Terminal set: I = (DCC, CCC, CCD, CDC)

 Payoff: π(q, p) (9)= 1
4 ((0.4 + 0.1 + 0.2 + 0.3)b − 3c) .

(c) (d)

DCCDDCDDD

CCC

CCD

CDC

C C D

CC

C

pCCC=0.1

pCCD=0.2

pCDC=0.3

pDCC=0.4

 Terminal sets: I1 = (CCC) & I2 = (DCC, CCD, CDC)

 Payoffs: π(q1, p) (9)= 0.1b − c & π(q2, p) (9)= 1
3 ((0.4 + 0.2 + 0.3)b − 2c) .

(a)

 p(h) =

0.4 for h = DCC,
0.3 for h = CDC,
0.2 for h = CCD,
0.1 for h = CCC,
0 else.

 q(h) =

1 for h = DCC,
1 for h = CDC,
1 for h = CCD,
0 for h = CCC,
1 for h = DDD,
1 for h = DDC
0 else.

 (b − c −c
b 0 )
 with b > c

(b)C D
C
D



…
1

(r s
t p)
C D

C
D

2

(r s
t p)
C D

C
D

3

(r s
t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D

n

(r s
t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

∞



C D

D C

C C C

C CD

…
1

(r s
t p)
C D

C
D

2

(r s
t p)
C D

C
D

3

(r s
t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D

n

(r s
t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

∞



C D

D C

C C C

C CD

…
1

(r s
t p)
C D

C
D

2

(r s
t p)
C D

C
D

3

(r s
t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D

n

(r s
t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

∞

|| ||

?



C D

D C

C C C

C CD

…
1

(r s
t p)
C D

C
D

2

(r s
t p)
C D

C
D

3

(r s
t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D

n

(r s
t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

∞

|| ||

?

…(r s
t p)
C D

C
D (r s

t p)
C D

C
D (r s

t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D (r s

t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

∞



C D

D C

C C C

C CD

…
1

(r s
t p)
C D

C
D

2

(r s
t p)
C D

C
D

3

(r s
t p)
C D

C
D

n − 1

(r s
t p)
C D

C
D

n

(r s
t p)
C D

C
D

n + 1

(r s
t p)
C D

C
D

?

∞

| |

}

|| ||
}


