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Repeated games and stochastic games are important frameworks to study direct
reciprocity. Individuals react strategically to their coplayers’ previous behavior. While
strategies in such games can be arbitrarily complex, explorations of evolutionary
dynamics are often done in specific strategy spaces. Individuals may consider a fixed
number of past rounds, or only some of the partner’s previous actions. Such restrictions
can make the interpretation of the results difficult. Strategies found to be superior
within a restricted set may lose stability when more complex strategies are permitted.
We discuss two notions of completeness that rule out this possibility. If a strategy
space, S, is best-reply-complete, then any strategy in S is guaranteed to have a best
reply in S. If a space, S, is payoff-complete, then any strategy playing against an
opponent in S can be replaced by an equivalent strategy within S without affecting
either player’s payoff. Sufficient conditions for best-reply-completeness have been given
in a seminal paper by Levinsky et al. Here, we show that for strategies of bounded
memory, the same conditions are sufficient for payoff-completeness. Furthermore,
using those conditions, we illustrate how to construct many complete spaces for simple
games. Taken together, our findings highlight the importance of complete strategy
spaces, which are particularly useful when interpreting evolutionary simulations and
determining best responses.

evolutionary game theory | repeated prisoner’s dilemma | direct reciprocity | stochastic processes
cooperation

Direct reciprocity is an important mechanism for cooperation (1). This mechanism
focuses on individuals who interact for many rounds, and hence are able to react to their
coplayer’s previous actions. If players engage in the same stage game in every round,
researchers speak of a repeated game (2). The repeated prisoner’s dilemma (3-10) is a
classic and well studied example. Games like this help us capture the logic of reciprocal
cooperation in animals (11), humans (12), and across nations (13). More generally, when
the stage games played in each round can change, depending on the previous game and
the players’ previous actions, researchers speak of a stochastic game (14). Here, the stage
game is associated with a dynamic game state, which can transition from round to round
(Fig. 14). The game state affects the actions available to players and the payoffs which
they earn.

To make their decisions in each round, individuals follow their strategies. A strategy
is a rule that tells the player what to do, given the history of previous play and the
current (game) state. In general, such strategies can be rather complex. For computational
reasons, however, evolutionary analyses of games often assume that players choose from
a restricted set of strategies. Well-known sets are reactive strategies (15, 16), memory-
1 strategies (17), or memory-# strategies (18-22). These sets describe individuals who
hold in memory only the coplayer’s last action, the outcome of the last round, or the
outcome of the last # rounds, respectively. While restricting memory to the most recent
experiences may seem innocuous, results from respective studies need to be interpreted
with caution. A specific strategy might be successful within a restricted strategy space,
but once we allow for strategies of different complexity it might be outperformed. As
a result, it can be difficult to ensure that a winning strategy derived from evolutionary
simulations is robust in a more general environment. To ascertain robustness, it becomes
important to investigate the following broad question: Can strategies outside of a given
space achieve superior outcomes which are impossible within the space?

A key contribution toward that question was made by Levinsky et al. (23), a work we
briefly sketch below and that we revisit in more detail in Results. Informally, they give
a condition under which a strategy of a certain kind has a best reply of the same kind.
To state their result, Levinsky et al. introduce “factors.” A factored strategy (23) chooses
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actions based not on the game history directly, but rather on
some simple function @ of the history. This function ¢ is the
factor. A factor is like a lens through which a strategy views the
game history (Fig. 1 Band C). It filters out some information and
registers only a desired portion, such as a given player’s previous
two moves. That portion alone informs the focal player’s next
action. One important property a factor may have is recursiveness.
Recursiveness means that the information stored by a factor can
be updated incrementally (Fig. 2). This prevents a factor from
being able to store more information about less recent rounds
than about more recent rounds. For stochastic games with a fixed
discount factor, Levinsky et al. (23) prove the following result:
Let @ be a recursive factor. If o7 is a @-factored strategy for
player 1, then there is also a (deterministic) @-factored strategy
oy for player 2, which is a best reply to o). Furthermore, the
best reply property can be guaranteed in all subgames. This result
means that to any strategy, there is a best reply that takes into
account the same kind of information. The above result can
be used to identify strategy spaces that are closed under taking
best replies. We propose to call such strategy spaces besi-reply-
complete.

Understanding the scope of best replies is important for
carrying out informed evolutionary studies. However, for many
questions in evolutionary game theory, best replies are not the
only relevant concept. For example, if the strategy space is
uncountably large, random mutations typically do not introduce
best replies into the population; however, they may well introduce
better replies (strategies that yield a better payoff than the payoff of
a resident strategy). Furthermore, in evolutionary competitions
between two strategies, typically the payoff of both types matter.
To take into account such considerations, we propose to consider
strategy spaces that are payoff-complete. To this end, fix a focal
player’s strategy space and suppose the focal player adopts an
element of that space, whereas the coplayer adopts an arbitrary
strategy. Then payoff-completeness means that the coplayer
can always switch to a strategy in the focal player’s space
without affecting either player’s payoff. A property of this kind
was described for the space of memory-# strategies by Press
and Dyson in the case of no discounting (24). This property
ensures, for example, that a focal player with a zero-determinant
strategy enforces a linear payoff relationship against all possible
coplayers, not only against those players with strategies of similar
complexity (24-30).

To give a criterion for a strategy space to be payoff complete,
we ask a question analogous to the one by Levinsky et al. (23): If
an arbitrary strategy is used against a fixed @-factored opponent,
can this arbitrary strategy be exactly emulated—in terms of the
payoffs to both players—by an alternative @-factored strategy?
We address this question for stochastic games with a fixed
discount factor and finitely many states. Under appropriate
assumptions, we show if o] is a @-factored strategy for player
1, and oy is an arbitrary strategy for player 2, then there is
an alternative ¢-factored strategy o for player 2 that results
in the same payoffs to both players (Fig. 3). Furthermore, this
payoff equivalence can be guaranteed for all payoff functions
simultaneously (i.e., ¢, does not depend on the specific entries
of the payoff matrix).

Odur results, when combined with those of Levinsky et al. (23),
imply that many diverse strategy spaces are both best-reply-
complete and payoff-complete. Complete spaces are essential
for carrying out evolutionary studies with robust conclusions.
We illustrate how to easily identify examples of complete spaces
using partitions. We also point out the incompleteness of other
strategy spaces.
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Results

Our following analysis consists of two parts. First, we formally
introduce stochastic games, factors, and recursiveness. Here,
we also explain the results of Levinsky et al. (23) in order
to contextualize our own main result, which is presented
immediately afterward. In the second part, we illustrate these
concepts for the example of a repeated prisoner’s dilemma, and
we define the notion of complete strategy spaces. Throughout
this main text, we provide a summary of our results; all proofs
and more detailed information are in S Appendix.

Stochastic Games. Stochastic games are a model for repeated in-
teractions in dynamic environments. A stochastic game (Fig. 14)
is played over infinitely many rounds. In each round #, there is a
game state z; which belongs to a set of possible states S. Player
1 chooses an action 4! from a set A (z;) of available actions in
that state. Likewise player 2 chooses an action &> from A, (z;).
The result is an action profile 2, = (4., 4%). At the end of each
round, each player 7 is assigned an immediate payoff #;(z;, 4;)
based on the game state and actions taken. The game state then
transitions from state z; to state z,41 according to a transition
probability which depends on the actions ;.

In general, the players’ actions may depend on what happened
in all previous rounds (i.e., on the game history) (Fig. 1B). We
write the set of all possible finite game histories as

H® = {(zl,al,zz,...,z,) reN, ZJ‘ES, d]lGAl(z])} [1]

A strategy o; for player i specifies the probabilities for choosing
each action, based on the history. In other words, o; is a map
which takes any history 4 € H* as an input, and outputs a prob-
ability distribution ¢;(4) over the set of available actions 4;(z;)
in the current state. If player 1 uses a strategy o and player 2 uses
a strategy 07, then the f-discounted payoff to player i is given by

”;3(0'1; o) =E|(1-8) Zﬂt_l ui(2s ;) (2]

=1

That is, players aim to maximize their expected discounted
payoff across all future rounds.

Factors. A factor (23) is a formal device which constrains the
complexity of a strategy. The point is that a factored strategy
must choose actions based on some simple function of the history,
rather than directly based on the game history itself (Fig. 1C).
Formally, a factor ¢ is a map from H* to some set X. One
thinks of @(#) as some information about 4 that is stored by ¢.
We require @ to be such that

Lz) = z =2z [3]

oz, a1,....2) = @(z, 4y, . .

That is, @ must store the current game state (it distinguishes
between two histories 4 and /' in which the current game state
is different). A strategy o; for player i is called @-factored if
o;(h)=0;(/) whenever @(h)=q@(#'). In other words, when the
factor @ cannot distinguish between two histories, a g-factored
strategy does not distinguish between the two histories either.
Some of the simplest factors are what we call memory-# factors.
Such factors only depend on the most recent # rounds. More
precisely, if @ is a memory-£ factor, and 4 is a finite history of
length at least £, then @(5) is computed by first extracting just the
outcome of the most recent # rounds—#,—and applying some
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A A stochastic game with two states

s1: more profitable state

B A game history after five rounds

s2: less profitable state

Round no. 1 2 3 4 5 6

C D always C D
-
C 4 0 C 2 0 Game state: s1 s1 sl sl s2 si
Player 1: C C D D C
D\ 8 2 e —— D\ 4 1 Payer2: C D D D D
C after CC, CD, DC: 5%
after DD: 20%
after CC, CD, DC: 95%
after DD: 80%
C Af — — Y
A factored strategy it gt X = e & play C with 90% probability
Round no. 1 2 3 4 5 6 el 1
FX T : :

Game state: s1 si1
Player 1: C C
Player 2: C D

Fig. 1.

play C with 0% probability

! otherwise: play C with 5% probability

Stochastic games. A stochastic game involves infinitely many rounds. In each round, there is a game state, which determines the available actions to

players and their resulting payoffs. The actions also lead the game state to transition stochastically from one possible state to another. The game state could
reflect the external environment, or the actions of additional players who are treated as part of Nature. A stochastic game with one game state is a repeated
game. (A), we present an example stochastic game with two states. In both states, the players choose between the actions C (“cooperate”) and D (“defect”) of
a basic cooperative dilemma. The immediate payoffs in state 2 are half as large. (B), we show a possible game history after five rounds. (C), we indicate one
possible factor and a corresponding factored strategy. The factor isolates the current game state, the actions of the previous round, and player 2's action in
the second-previous round. A factored strategy always decides what to play next based only on this information. In general, factors can be more complicated.
For example, they may have unbounded memory, or may be able to distinguish between some actions and not others in the game history.

fixed function @, to it. That is, @(h) = @z(hs). If b has length
less than £, we simply define ¢ (4) = 4. If @ is a memory-# factor,
then a @-factored strategy is a memory-# strategy (18-22). Such
strategies decide what to play based only on the outcome of the
most recent k rounds (during the very first £ rounds, the strategy’s
behavior is not constrained at all. However, see SI Appendix for
other possibilities).

Recursiveness. Recursiveness (23) is an important property of
some factors. It expresses that information about the game history
can be updated incrementally. Formally, a factor @ is recursive
if @(z1,41,...,2, a4, z,41) is determined by @(z1,41, ..., 2),
by 4;, and by z,41. That is, given the information taken into
account in the previous round, the outcome of that round, and
the new state, the player has all the information required to make a
decision in the next round (Fig. 2). This property prevents a factor
from having a greater memory capacity for rounds more distant
in the past. Many basic factors are recursive. An example of a non-
recursive factor is one for which @(z1, 41, ...,2;) = (a,—2, 7).
This factor stores only the current game state z, and the second-
previous round of actions, 4;,—». The memory cannot be updated
incrementally, because the new increment of information a;, z;41
cannot recover the forgotten round of actions ;1.

Two Key Theorems on ¢-Factored Strategies. Based on these
concepts, Levinsky et al. prove the following result (theorem 4.1
in ref. 23). Consider a stochastic game with countably many
states, finitely many available actions in each state, a bounded
payoff function #;, and a discount factor f € (0, 1). Let ¢ be a
recursive factor and o] be a p-factored strategy for player 1. Then
there is a deterministic @-factored strategy o for player 2, which
is a best reply to o} in all subgames. This means that playing o7 is
optimal, regardless of what moves have already been played. The
upshot of this theorem is that if my opponent is recursively ¢-
factored, I can optimize my strategy by also choosing a g-factored
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strategy. The authors extend this basic result in many directions.
In particular, they also consider best replies for all sufficiently
large discount factors, and for the limit of no discounting.

In the context of payoff equivalence, we can state our main
result as follows. Consider a stochastic game with finitely many
states and a discount factor f € (0,1). Let ¢ be a recursive
factor which is memory-£ for some k, let 61 be a @-factored
strategy for player 1, and let o be an arbitrary strategy for player
2, not necessarily even of bounded memory. Then there is a
@-factored strategy ¢ for player 2 such that the f-discounted

payoffs 77,'2(61, 05) for both players are the same as the original

payoffs 71';3(61, 02). Moreover, these equalities hold regardless of
the payoff functions #;. The upshot of our theorem is that, if my
opponent is recursively @-factored, then any strategy of arbitrary
complexity I may wish to adopt has a payoff-equivalent strategy
which is also @-factored.

After having formulated the key concepts and results for ¢-
factored strategies, in the following, we illustrate their significance
in the simple setting of repeated games. We also present a natural
motivating application, the identification of complete strategy
spaces for direct reciprocity.

Repeated Games. Repeated games can be interpreted as stochas-
tic games with only one static game state. Players meet in infinitely
many rounds and choose actions from a fixed finite set A each
time, receiving payoffs according to a payoff matrix. For example,
ina2x 2 symmetric repeated game such as the repeated prisoner’s
dilemma (31-34), each player chooses between two actions, C
and D (for cooperate and defect). They receive payoffs in each
round according to a matrix

C D
Cfla b
(4]
D\c 4
https://doi.org/10.1073/pnas.2518486123
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A recursive memory-2 partition (factor) with four blocks

f{ec, 2,8 22) {65, 8,26, 88

player

1: CDCDID D|C
player 2: D CD D|C C|D —>

5

-

the new round (CD),
together with the cC_ D
current block corc
(green),

determines the

updated block

C D
\D orp O
D\ C D

CC CD DC DD} {CC

DC, DC, DC, DC 6B, B5 DD}}

DD, DD, DD, DD
player1: cDCDD[DC
DDCI|ICD

player 2: D C

/S;B\x

DOD

(reton) B
B non-recursive memory-2 partition (factor) with three blocks

CD, CD, CD, CD, DC, DC, DC, DC

DD, DD, DD, DD

{{CC CD DC DD},{CC CD DC DD CC CD DC DD},{CC CD DC DD}}

CC, CC, CC, CcC

the new round (CD),

together with the DDlC

current block DC|D 7T >
(yellow) does not

determine the 8 B |(3: _______ >

updated block, which
could be either blue
or yellow

Fig. 2. Recursive and nonrecursive factors. A factor serves to group game histories into blocks, according to their factor values. (A factored strategy then
chooses a move based not on the history but on the block.) It can be represented by a partition of histories. Here, we show two memory-2 factors, or partitions,
for a simple repeated game with actions C and D. A factor is recursive if the updated block is solely determined by the current block and the new round. Then
the game is described by a deterministic finite-state automaton with transitions between the blocks. (A), this memory-2 partition is recursive. It has four blocks,
colored green, yellow, red, and blue. Here, the block describing the most recent two rounds is updated from green to yellow when the new actions CD are
played. To know that the updated block is yellow, we only need to know that the current block is green and the new actions are CD. (B), this memory-2 partition
is nonrecursive. It has three blocks. The blocks represent whether the coplayer has cooperated twice (green), once (yellow), or never (blue) during the last two
rounds. Assume the current block is yellow and the outcome of the most recent round is CD. Depending on the precise memory-2 history, the new block could
be either yellow or blue. Since the choice is not determined, the partition is not recursive. However, every nonrecursive partition can be made recursive by
subdividing the blocks further. Notice that the first partition is a refinement of the second. In the worst-case scenario, one can subdivide into the partition of

singletons, which is recursive.

Here, each entry refers to the payoff of the row-player. The
respective payoff of the column player follows from symmetry.

Memory-k Factors for Repeated Games.let H be the set
{CC, CD, DC, DD} of possible outcomes for a single round. For
example, CD means that player 1 played C and player 2 played D.
The Cartesian product H” = H x ... x H is the set of possible
outcomes for 7 consecutive rounds. We write a multiround
outcome using “|” notation: For example, CC|CD|DD refers
to a sequence of three consecutive rounds. In the most recent
round, both players played D. A factor @ then takes all finite
game histories and maps them to some arbitrary set X. What a
factor really does is allow us to group the histories into “blocks;”
each block of histories gets mapped to a unique value x € X. The
value x need not have any inherent meaning. In practice, x is just
an “atom” which represents the block. We may produce factors
simply by constructing appropriate blocks of histories.

For example, there is a memory-1 factor which groups together
all histories endingin CCinto one block; all histories endingin CD
or DC into a second block; and all histories ending in DD into a
third block. We represent this factor bya partition of H'! as follows:

P = {{CC}, {CD, DC}, {DD}} [5]
As another example, there is a memory-1 factor which groups
together all histories ending in CC or DC into one block; and all
histories ending in CD or DD into a second block. We represent
this factor by a partition of H' as follows:

40f 9 https://doi.org/10.1073/pnas.2518486123

P = {{CC, DC}, {CD, DD}} [6]
As a third example, there is a memory-2 factor which groups
together all histories ending in CC|CC into one block; and all
histories ending in other two-round patterns, like CC|CD or
DDIDD, together into a second block. We represent this factor
by a partition of H? as follows:

P = {{CC|CC}, {CCICD, ... ,DD|DD}} [7]

In this way, every memory-4 factor can simply be represented as
a partition of H*. This representation is convenient because each
block in P contains just the relevant parts of the histories, that is,
the outcomes of the most recent # rounds. Thus an infinite block
of many possible game histories is represented by a small, finite
block of the partition P (technically, we have ignored histories of
length smaller than 4. For simplicity, we place each of these in
its own unique block of histories, but we do not include them in
the partition representation for conciseness).

There are fifteen memory-1 partitions in total (SI Appendix,
Fig. S1). Because here we focus on a symmetric game, each
partition has a well-defined conjugate partition, which is pro-
duced by switching the actions of player 1 and player 2 in
each history. For example, the conjugate partition of [6] is
{{CC, CD}, {DC, DD}}. Some partitions, like the memory-1
partition [5] or the memory-2 partition [7], are equal to their own
conjugate. We call these symmetric partitions. The significance
of symmetric partitions will be explained below.

pnas.org
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Sometimes is it useful to subdivide the blocks of a partition
P to get another partition Q with more blocks. In that case,
we write P < Q (after all, P has fewer blocks) and say Q is a
refinement of P. The most refined partition is the partition of
H* into singletons. In that case, the player distinguishes every
single memory-#£ history.

Recursiveness. Suppose P is a memory-k partition. We write
[4]p to represent the partition element or block which contains
h € H*. In terms of partitions, we can interpret the property
of recursiveness as follows: For any sequence of outcomes for 4
rounds (4, ..., #*) € H* and any new outcome ¥t € H,
the block for the updated sequence is completely determined by
the block for the old sequence, together with the new round. In
other words, there is an assignment P x H — P such that

new round updated block
— —_—
( [hl,...,bk]p, hk—i—l) —_ [lﬂz,ha,...,hk—i_l]p 8]
—_— ~
determine

previous block and

Clearly, all memory-1 partitions are recursive. Here, the next
moves of the two players fully determine the next block. But
only 78,721 memory-2 partitions are recursive (out of about ten
billion in total). For an example of such a recursive memory-2
partition (and an example of a partition that is not recursive),
see Fig. 2. As 7 increases, the proportion of recursive partitions
among all memory-» partitions shrinks further. But most of the
nonrecursive partitions are hard to interpret, and unlikely to be
relevant to evolutionary game theory. Moreover, any partition
can be refined until it is recursive, as explained in more detail in
SI Appendix.

Examples of recursive memory-#4 partitions can be constructed
by combining different memory-1 partitions. To see how this
works, take a collection of memory-1 partitions Py, ..., P, and
define the product partition P = Py X+ x P, = {f1 X -+ X
b, |bl- € P;}. The definition simply means that forall 4, /' € H*,

. .7

blp =H]p = Vj:[Flp =/

J

(9]

Here, #/ means the outcome of the jth round, in chronological
order, in the history 4. Such a product partition is recursive if and
onlyif Py < Py <--. < P,. Thatis, the further events are in the
past, the coarser the respective partitions tend to be. The intuition
is that stored memory about a given round must monotonically
decrease as new rounds are played and the round recedes into
the past. Some of these product partitions are well known in
evolutionary game theory, and we will allude to examples below.
However, product partitions are not the only possibilities.

Factored Strategies. A memory-# strategy (18-22) decides the
next move based only on the outcome of the previous #
rounds. For example, memory-0 strategies choose what to play
without regard to the previous rounds. These include the strategy
always-cooperate (ALLC) and always-defect (ALLD). Memory-1
strategies choose what to play based only on the previous round.
The strategy win-stay, lose-shift (WSLS) (17, 35) cooperates only
if both players chose the same action in the previous round.
The strategy generous tit-for-tat (GTFT) (15, 36) cooperates if
the opponent cooperated in the previous round, and cooperates
with some probability 4 otherwise. Naturally, memory-£ factors
give rise to subspaces of memory-k strategies. We give two
characteristic examples.

PNAS 2026 Vol. 123 No.5 2518486123

For the first example, we consider the (symmetric) partition
given by the trivial memory-1 partition { {CC}, {CD}, {DC},

{DD}}. This partition represents a factor ¢ that groups histories
together into four blocks, according to the exact outcome of
the previous round. A ¢-factored strategy must specify four
probabilities, p1, p2, p3, ps. Here, p1 corresponds to the first
block. It is the probability to cooperate if the previous round
was CC. Likewise, py corresponds to the second block, and so
on. In addition to these conditional cooperation probabilities,
the strategy must also give a probability pg for cooperating in
the very first round. Therefore, in this case, a p-factored strategy
is the same thing as a memory-1 strategy. Now, applying the
theorem of Levinsky et al. (23) and our theorem, we conclude
the following two facts: 7) Every memory-1 strategy has a best
reply (in all subgames) which is also memory-1. i) If the focal
player uses a memory-1 strategy and the coplayer uses an arbitrary
strategy, the coplayer can switch to a memory-1 strategy while
preserving the payoffs to both players [this extends a result of
Press and Dyson (24) to the case of discounting.]

For the second example, take the memory-1 partition [6],
{{CC, DC}, {CD, DD}}. This partition represents a factor @
that groups histories together into two blocks, according to
player 2’s last move. A @-factored strategy must specify two
conditional cooperation probabilities, one for each block. Because
the decision of whether or not to cooperate is based on player 2’s
most recent move, the factor introduces an important asymmetry
between the two players. A @-factored strategy for player 1
responds to the opponent’s previous move. It is called a reactive-
1 strategy (15, 16). An example is GTFT. On the other hand,
a @-factored strategy for player 2 responds to player 2’s own
previous move. It is called a self-reactive-1 strategy (37). An
example is Alternator, a strategy which always plays the opposite
move as it played in the previous round. Now, applying the
theorem of Levinsky et al. (23) and our own theorem, we
conclude the following two facts: 7) Every reactive-1 strategy
has a best reply (in all subgames) which is self-reactive-1. 77) If
the focal player uses a reactive-1 strategy, and the coplayer uses
an arbitrary strategy, then the coplayer can switch to a self-
reactive-1 strategy while preserving the payoffs of both players.
Again, this example extends a previous result (37) to the case of
discounting.

The important difference between the two examples is that the
first partition is symmetric. Only in this first example, we recover
the same partition if we swap the moves of the two players. In
the second example, there are two equivalent ways to look at the
relationship between reactive-1 and self-reactive-1 strategies. The
first is to consider the factor @ to be fixed and the strategy types
to arise for player 1 and player 2, respectively. The second way is
to focus on player 1 exclusively and to consider the strategy types
to arise from two separate factors, one based on the partition
{{CC, DC}, {CD, DD}} and the other based on its conjugate.
Both pictures are useful for different settings. The first picture
connects well to our earlier key theorems. The second picture is
advantageous because it does not require tracking the identities of
indistinguishable players. Only a focal player, always designated
as player 1, is relevant.

Some other examples of the symmetric case include the
partitions [5] and [7]. Partition [5] leads to the space of memory-
1 counting strategies (19, 38). Counting strategies count how
many players cooperated in the previous round and respond
accordingly. The -fold product of this partition leads to the space
of memory-# roundwise-counting strategies. Some other notable
examples of the asymmetric case include the £-fold product of
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[6] or its conjugate. This leads to the reactive-£ strategies and
self-reactive-# strategies (37, 39).

Overall, we note that memory-£ partitions are either symmetric
or asymmetric. The asymmetric partitions come in conjugate
pairs. For evolutionary simulations, partitions with fewer blocks
are often more practical, because they generate strategy spaces
with fewer dimensions.

Completeness. In the previous section, we illustrated how the
theorem of Levinsky et al. (23) and our own theorem have
meaningful implications for two different recursive partitions.
We saw that the implications depended on whether the partitions
were symmetric or asymmetric. In this section, we explain
how these theorems establish certain important completeness
properties.

For symmetric partitions, the situation is simple. Each
symmetric partition gives rise to a single space of strategies.
For example, for the partition {{CC}, {CD, DC}, {DD}}, we
obtain the memory-1 counting strategies. That strategy space
S is guaranteed to enjoy two completeness properties. Best-reply-
completeness means that for each strategy s € S, there exists a
strategy s’ €S that is a best reply to s in all subgames. This means
that given the history of the game up to any point, no strategy can
achieve a greater continuation payoff against s than the payoff s/
achieves against s. Payoff-completeness means that the following
holds: for every strategy s € S for the focal player, and every
strategy s for the coplayer (of arbitrary complexity), there is a
strategy 5" € S for the coplayer which achieves the same payoffs
to both players. We call this s” a payoff-preserving reply. Payoft-
completeness then guarantees the existence of payoff-preserving
replies. Best-reply-completeness guarantees the existence of a best
reply.

For asymmetric partitions, the situation is a bit more com-
plex. Each asymmetric partition and its conjugate, such as
{{CC, DC}, {CD, DD}} and {{CC, CD}, {DC, DD}}, give rise
to two distinct strategy spaces—in this case, the spaces of reactive-
1 and self-reactive-1 strategies. Neither of these is necessarily
complete on its own. However, a best reply or payoff-preserving
reply to a strategy in one space can always be found in the
other space. In particular, their #nion is best-reply-complete and
payoff-complete.

Fig. 3 illustrates payoff-completeness in a repeated prisoner’s
dilemma. Here, player 1 uses a memory-1 counting strategy
51 = (P{CC};P{CD, DC})P{DD}) = (1,1/4,0). Player 2 uses
a_memory-1 strategy s = (p(cc) (CD})> PIDC) P(DD)) =
(3/4,1,1/4,1/2). (Note that in our convention, the subscripts
CD and DC are ordered with player 1’s move first and player 2’s
move second.) The figure confirms that player 2 can switch to
a memory-1 counting strategy s, = (3/4,7/16,1/2), without
changing the payoff of either player.

Fig. 4 A and B provides a different illustration of the same
insight. Again, player 1 uses some fixed memory-1 counting
strategy. For player 2 we sample a large number of strategies,
either from the space of memory-1 strategies (Lef?) or from the
memory-1 counting strategies (Right). In line with our results,
the two generated payoff spaces coincide.

Fig. 4 C and D illustrates a strategy space which is incomplete
in both senses, the space of reactive-2 strategies. In this example,
player 1 uses a fixed reactive-2 strategy. Player 2 varies over
a sample of other reactive-2 strategies (Leff) or self-reactive-2
strategies (Right). We observe that player 1’s strategy is a best reply
to itself in the space of reactive-2 strategies, even though it can
be invaded by a self-reactive-2 strategy. This is an example where
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Fig. 3. Payoff-completeness in action. A strategy space S for a symmetric
game is payoff-complete if the following holds: If the focal player uses a
strategy in S and the coplayer uses an arbitrary strategy, then the coplayer
can switch to a strategy in S without changing the payoff of either player.
Equivalently: If my opponent has a fixed strategy in S and | am free
to vary my strategy, then | can realize all feasible payoff outcomes by
varying my strategy in S only. Here we show an example of a payoff-
complete subspace of memory-1 strategies, the space of memory-1 counting
strategies. Memory-1 counting strategies only depend on how many of
the two players cooperated the previous round. Suppose player 1 uses a
counting strategy p = (1, 1/4, 1/4,0) while player 2 uses a memory-1 strategy
q = (3/4,1,1/4,1/2) as shown. Then player 2 can switch to the payoff-
equivalent counting strategy q' = (3/4,7/16,7/16,1/2). Neither player's
payoff is affected. This conclusion does not depend on the payoff matrix
of the game. While our main results are stated for a discount factor g < 1, the
property of payoff-equivalence also applies in the limit g — 1 when payoffs
are uniquely defined. For convenience, we have assumed this limit when
computing the new strategy and the payoffs.

evolutionary results for a strategy space can be misleading. When
running simulations restricted to reactive-2 strategies, player 1’s
strategy in Fig. 4 C'and D might well arise as a stable outcome. Yet
if the simulation also allowed for (equally complex) self-reactive-2
strategies, this outcome would no longer be robust.

We conclude with a few remarks. First, as defined here, payoff-
completeness is concerned with finding a strategy s € S that
preserves payoffs for the entire game, given the two players
start in the initial round. Instead, one may be interested in
payoff-preserving replies starting from arbitrary subgames. While
under the appropriate conditions one can indeed find the
respective payoff-preserving replies in S, they might depend
on the subgame—on the game history up to the time of the
switch. The situation is different for best-reply completeness.
Here, under appropriate assumptions, one can find strategies
that are a best reply in all subgames (23).

Second, herein, we focus exclusively on the case of discounted
games, with f# € (0, 1). For the complete spaces that satisfy our
criteria, however, Levinsky et al. have also established best-reply-
completeness in the limiting average payoff case (no discounting).
Addressing this limit for payoff-completeness is a possible topic
for future work.

Finally, we note that our result provides a sufficient condition
for completeness, but not a necessary one. To illustrate this point,
consider the space of reactive-1 strategies. Since the associated
partition is not symmetric, this space, taken by itself, does not
satisfy our criteria for completeness. Yet it turns out that the
space is nevertheless payoff-complete for some particular payoff
matrices (e.g., a donation game, which is additive 39, Fig. 54),
despite being incomplete for others (e.g., a snowdrift game,

Fig. 5B).
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Fig. 4. Complete and incomplete strategy spaces. We examine a prisoner’s dilemma with (a, b, ¢, d) = (2, —1, 3, 0). Although our results are stated for discount
rate less than 1, analogous phenomena arise in the limit of no discounting g — 1, which we use here for convenience. (A and B), We fix player 1's strategy to
be the memory-1 counting strategy p=(0.42,0.70,0.70, 0.00). For the strategy of player 2, we randomly sample a large number of memory-1 strategies (A) or
memory-1 counting strategies (B). The covered area of payoffs is the same in both cases because the space of memory-1 counting strategies is based on a
symmetric and recursive partition, and hence is payoff-complete. (C and D), We assign player 1 a fixed strategy from a space that is neither best-reply-complete
nor payoff-complete, the space of reactive-2 strategies. This strategy is p=(1, 0.85,0.85, 0), corresponding to the last two actions of the opponent, CC, CD, DC,
DD. (C), Player 2 samples a large number of reactive-2 strategies, generating an area of feasible payoffs. Note that p is the best-reply to itself in the space of
reactive-2 strategies. (D), Among the self-reactive-2 strategies, one can find a better reply, such as the Alternator strategy that alternates between cooperation
and defection each round. The resulting payoff for the Alternator is 2.05, which exceeds the payoff 2.00 of p against itself. The area of feasible payoffs is strictly
larger, showing that the space of reactive-2 strategies is not payoff-complete. The area on the right cannot grow any larger by expanding the strategy space of

player 2: one can always find a payoff-preserving reply among the self-reactive-2 strategies.

Discussion

Repeated games and stochastic games play an important role
in evolutionary game theory. They serve as natural models
to capture the essence of reciprocity (6). Such models can
explain the dynamics of friendships (40), competing firms (41),
or of trade networks (13). In practice, individuals in these
applications might employ highly nontrivial strategies, which
depend on events arbitrarily far in the past. Yet when describing
such interactions mathematically, researchers often restrict the
strategies’ complexity. Such a restriction can be useful. It may
allow researchers to obtain analytical results that otherwise would
be infeasible. At the same time, such restrictions also entail a risk.
Results thus obtained might be spurious. Certain strategies might
only evolve because mutants that could easily invade are rendered
impossible by design. To address that risk, we introduce two
complementary concepts of complete strategy spaces. If a space S
is best-reply-complete, then any strategy in § has a best reply in S.
If the space is payoff-complete and the focal player uses a strategy
in S, then one can find for any strategy of the coplayer a strategy in
S that leaves the payoffs for both players unchanged. That is, any
outcome that can be realized againstan S opponent can be realized
with a strategy in S. Levinsky et al. (23) have introduced a general

PNAS 2026 Vol. 123 No.5 2518486123

criterion for a strategy space to be best-reply-complete. We
show that the same criterion also implies payoff-completeness.
Interestingly, when that criterion applies, the strategy space is
payoff-complete irrespective of the precise game being considered
and irrespective of the precise discount rate.

Complete spaces are useful when interpreting evolutionary
simulations and determining best responses. For example, if a
strategy is a best reply within a best-reply-complete strategy space,
then it remains a best reply even if more complex strategies are
considered.

Our motivation to study complete strategy spaces is related to
recent arguments that strategy spaces should be unbiased (42).
This latter requirement means that researchers should not cherry-
pick the strategies they choose to compare. For example, instead
of analyzing the competition of ALLC, ALLD, and Tit-for-Tat,
researchers should permit all strategies of a given complexity
class (in this case, say all reactive strategies). Our results, however,
suggest that this requirement of unbiasedness may not be enough.
Even when exploring the evolutionary dynamics among all
reactive strategies, the winning strategy may still perish once we
allow for strategies of higher or different complexity (Fig. 5B). To
manage that risk, our two notions of completeness seem key. For
example, when a given resident strategy s € S is challenged by rare
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Fig. 5. Whether a space is complete can depend on the game. For spaces that are not based on recursive symmetric partitions, it may depend on the specific
game whether the space is payoff-complete. Here, we assume player 1 adopts a fixed reactive-1 strategy p = (1,0.85) (for a coplayer who cooperated or
defected in the previous round, respectively). The partition associated to reactive-1 strategies is not symmetric. For the coplayer, we either sample reactive-1
strategies (blue points), or self-reactive-1 strategies (green points). (A), When payoffs are given by a donation game, (a, b, ¢, d) = (2, -1, 3,0), the space of reactive-
1 strategies is payoff-complete. (B), For a snowdrift game, (a, b, ¢, d) = (2.5, 2, 3,0), the space is no longer payoff-complete. In both cases, for convenience, we

have taken a discount rate approaching one, g— 1.

mutants, payoff completeness of S implies that the resident faces
the full range of possible mutant payoffs. Any payoff that can be
realized in an interaction against the resident can be realized by
a mutant strategy drawn from within S.

Importantly, however, this result does not ensure that the
distribution of mutant payoffs is preserved. For example, for
a given memory-1 resident, the generated payoffs may differ
depending on whether random mutants are drawn from the space
of memory-1 strategies or memory-2 strategies (even though
any memory-2 strategy can be emulated within the memory-
1 space). In particular, even for a complete strategy space,
simulation results still depend on the specific process used to
generate random mutants. Therefore, it remains important to
explore the effect of different mutation schemes when performing
evolutionary simulations.

The criterion for completeness involves the notion of recursive
factors (23) or partitions. All partitions of memory-1 histories
are recursive. Only a small number of memory-£ partitions are
recursive. However, every partition can be refined into a recursive
partition. Therefore, for every strategy space, it is possible to find a
(slightly) larger one which is complete. In S/ Appendix, the general
mathematical theory, which may be useful in further extensions,
is discussed at length. We describe how recursiveness enters the
picture when studying games, and what can go wrong when it
is absent. We also describe an explicit algorithm for refining a
partition to make it recursive. Many additional examples and
details are also contained there.

An interesting open problem is to give a set of necessary and
sufficient conditions for completeness. The condition we present
here is sufficient but not necessary. Another open problem is
whether certain strategies such as ALLD are necessarily part
of any complete space. A last promising direction is to extend
the idea of completeness to repeated games with an alternating
move structure (43—45), or to extend payoff-completeness to
other settings where some results on best replies are known, for
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example, continuous strategy spaces (23, 46, 47), or spaces of
time-dependent strategies (23, 48).

Materials and Methods

To establish our result, we use the theory of Markov decision processes, or MDPs.
A Markov decision process is equivalent to a stochastic game with only one
player. Beginning with a stochastic game, we expand the state space into a
space of game histories. Thus, we track previous moves as well as the current
state. This allows us to abstract out one player by absorbing this player's strategy
into the transition probability. The result is a Markov decision process for the
remaining player. We generate a multiobjective Markov decision process (or
MOMDP) by storing both players' payoffs in a vector.

This technique is described at length in our S/ Appendix. We derive our main
result by applying a lemma which holds for a certain class of state-aggregated
multiobjective Markov decision processes, which we call factored (MO)MDPs. A
factored strategy for the abstracted player leads to a factored MDP for the focal
player. The lemma states that any strategy for a factored MDP has a stationary
(based on the current state) strategy which achieves the same vector payoff.
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