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Significance 

When people interact repeatedly, 
they often adopt strategies of 
direct reciprocity. In principle, 
such strategies can be very 
complex. A person’s next move 
could depend on every prior 
interaction. Yet, many models 
restrict the set of feasible 
strategies, for example, by 
limiting the number of past 
events individuals hold in 
memory. Such restrictions come 
with a risk: Conclusions for 
restricted strategy spaces may no 
longer apply if individuals were 
allowed to deviate toward more 
complex strategies. A strategy 
space is called complete if that 
risk is provably nonexistent. Here, 
we introduce two complementary 
notions of completeness. Taking 
an established criterion for one of 
these notions, we extend it to the 
other notion and construct many 
complete spaces. 

Repeated games and stochastic games are important frameworks to study direct 
reciprocity. Individuals react strategically to their coplayers’ previous behavior. While 
strategies in such games can be arbitrarily complex, explorations of evolutionary 
dynamics are often done in specific strategy spaces. Individuals may consider a fixed 
number of past rounds, or only some of the partner’s previous actions. Such restrictions 
can make the interpretation of the results difficult. Strategies found to be superior 
within a restricted set may lose stability when more complex strategies are permitted. 
We discuss two notions of completeness that rule out this possibility. If a strategy 
space, S, is best-reply-complete, then any strategy in S is guaranteed to have a best 
reply in S. If a space, S, is payoff-complete, then any strategy playing against an 
opponent in S can be replaced by an equivalent strategy within S without affecting 
either player’s payoff. Sufficient conditions for best-reply-completeness have been given 
in a seminal paper by Levínský et al. Here, we show that for strategies of bounded 
memory, the same conditions are sufficient for payoff-completeness. Furthermore, 
using those conditions, we illustrate how to construct many complete spaces for simple 
games. Taken together, our findings highlight the importance of complete strategy 
spaces, which are particularly useful when interpreting evolutionary simulations and 
determining best responses. 

evolutionary game theory | repeated prisoner’s dilemma | direct reciprocity | stochastic processes | 
cooperation 

Direct reciprocity is an important mechanism for cooperation (1). This mechanism 
focuses on individuals who interact for many rounds, and hence are able to react to their 
coplayer’s previous actions. If players engage in the same stage game in every round, 
researchers speak of a repeated game (2). The repeated prisoner’s dilemma (3–10) is a 
classic and well studied example. Games like this help us capture the logic of reciprocal 
cooperation in animals (11), humans (12), and across nations (13). More generally, when 
the stage games played in each round can change, depending on the previous game and 
the players’ previous actions, researchers speak of a stochastic game (14). Here, the stage 
game is associated with a dynamic game state, which can transition from round to round 
(Fig. 1A). The game state affects the actions available to players and the payoffs which 
they earn. 

To make their decisions in each round, individuals follow their strategies. A strategy 
is a rule that tells the player what to do, given the history of previous play and the 
current (game) state. In general, such strategies can be rather complex. For computational 
reasons, however, evolutionary analyses of games often assume that players choose from 
a restricted set of strategies. Well-known sets are reactive strategies (15, 16), memory-
1 strategies (17), or memory-n strategies (18–22). These sets describe individuals who 
hold in memory only the coplayer’s last action, the outcome of the last round, or the 
outcome of the last n rounds, respectively. While restricting memory to the most recent 
experiences may seem innocuous, results from respective studies need to be interpreted 
with caution. A specific strategy might be successful within a restricted strategy space, 
but once we allow for strategies of different complexity it might be outperformed. As 
a result, it can be difficult to ensure that a winning strategy derived from evolutionary 
simulations is robust in a more general environment. To ascertain robustness, it becomes 
important to investigate the following broad question: Can strategies outside of a given 
space achieve superior outcomes which are impossible within the space? 

A key contribution toward that question was made by Levínský et al. (23), a work we 
briefly sketch below and that we revisit in more detail in Results. Informally, they give 
a condition under which a strategy of a certain kind has a best reply of the same kind. 
To state their result, Levínský et al. introduce “factors.” A factored strategy (23) chooses 
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actions based not on the game history directly, but rather on 
some simple function 𝜑 of the history. This function 𝜑 is the 
factor. A factor is like a lens through which a strategy views the 
game history (Fig. 1 B and C ). It filters out some information and 
registers only a desired portion, such as a given player’s previous 
two moves. That portion alone informs the focal player’s next 
action. One important property a factor may have is recursiveness. 
Recursiveness means that the information stored by a factor can 
be updated incrementally (Fig. 2). This prevents a factor from 
being able to store more information about less recent rounds 
than about more recent rounds. For stochastic games with a fixed 
discount factor, Levínský et al. (23) prove the following result: 
Let 𝜑 be a recursive factor. If 𝜎1 is a 𝜑-factored strategy for 
player 1, then there is also a (deterministic) 𝜑-factored strategy 
𝜎2 for player 2, which is a best reply to 𝜎1. Furthermore, the 
best reply property can be guaranteed in all subgames. This result 
means that to any strategy, there is a best reply that takes into 
account the same kind of information. The above result can 
be used to identify strategy spaces that are closed under taking 
best replies. We propose to call such strategy spaces best-reply-
complete. 

Understanding the scope of best replies is important for 
carrying out informed evolutionary studies. However, for many 
questions in evolutionary game theory, best replies are not the 
only relevant concept. For example, if the strategy space is 
uncountably large, random mutations typically do not introduce 
best replies into the population; however, they may well introduce 
better replies (strategies that yield a better payoff than the payoff of 
a resident strategy). Furthermore, in evolutionary competitions 
between two strategies, typically the payoff of both types matter. 
To take into account such considerations, we propose to consider 
strategy spaces that are payoff-complete. To this end, fix a focal 
player’s strategy space and suppose the focal player adopts an 
element of that space, whereas the coplayer adopts an arbitrary 
strategy. Then payoff-completeness means that the coplayer 
can always switch to a strategy in the focal player’s space 
without affecting either player’s payoff. A property of this kind 
was described for the space of memory-n strategies by Press 
and Dyson in the case of no discounting (24). This property 
ensures, for example, that a focal player with a zero-determinant 
strategy enforces a linear payoff relationship against all possible 
coplayers, not only against those players with strategies of similar 
complexity (24–30). 

To give a criterion for a strategy space to be payoff complete, 
we ask a question analogous to the one by Levínský et al. (23): If 
an arbitrary strategy is used against a fixed 𝜑-factored opponent, 
can this arbitrary strategy be exactly emulated—in terms of the 
payoffs to both players—by an alternative 𝜑-factored strategy? 
We address this question for stochastic games with a fixed 
discount factor and finitely many states. Under appropriate 
assumptions, we show if 𝜎1 is a 𝜑-factored strategy for player 
1, and 𝜎2 is an arbitrary strategy for player 2, then there is 
an alternative 𝜑-factored strategy 𝜎 

2 for player 2 that results 
in the same payoffs to both players (Fig. 3). Furthermore, this 
payoff equivalence can be guaranteed for all payoff functions 
simultaneously (i.e., 𝜎 

2 does not depend on the specific entries 
of the payoff matrix). 

Our results, when combined with those of Levínský et al. (23), 
imply that many diverse strategy spaces are both best-reply-
complete and payoff-complete. Complete spaces are essential 
for carrying out evolutionary studies with robust conclusions. 
We illustrate how to easily identify examples of complete spaces 
using partitions. We also point out the incompleteness of other 
strategy spaces. 

Results 

Our following analysis consists of two parts. First, we formally 
introduce stochastic games, factors, and recursiveness. Here, 
we also explain the results of Levínský et al. (23) in order 
to contextualize our own main result, which is presented 
immediately afterward. In the second part, we illustrate these 
concepts for the example of a repeated prisoner’s dilemma, and 
we define the notion of complete strategy spaces. Throughout 
this main text, we provide a summary of our results; all proofs 
and more detailed information are in SI Appendix. 

Stochastic Games. Stochastic games are a model for repeated in-
teractions in dynamic environments. A stochastic game (Fig. 1A) 
is played over infinitely many rounds. In each round t, there is a 
game state zt which belongs to a set of possible states S. Player 
1 chooses an action a1 

t from a set A1(zt ) of available actions in 
that state. Likewise player 2 chooses an action a2 

t from A2(zt ). 
The result is an action profile at = (a1 

t , a2
t ). At the end of each 

round, each player i is assigned an immediate payoff ui(zt , at ) 
based on the game state and actions taken. The game state then 
transitions from state zt to state zt+1 according to a transition 
probability which depends on the actions at . 

In general, the players’ actions may depend on what happened 
in all previous rounds (i.e., on the game history) (Fig. 1B). We 
write the set of all possible finite game histories as 

H∞ = 
 
(z1, a1, z2, . . . , zt ) 

   t ∈ ℕ, zj ∈ S, a i j ∈ Ai(zj) 
 

[1] 

A strategy 𝜎i for player i specifies the probabilities for choosing 
each action, based on the history. In other words, 𝜎i is a map 
which takes any history h ∈ H ∞ as an input, and outputs a prob-
ability distribution 𝜎i(h) over the set of available actions Ai(zt ) 
in the current state. If player 1 uses a strategy 𝜎1 and player 2 uses 
a strategy 𝜎2, then the 𝛽-discounted payoff to player i is given by 

𝜋 i 𝛽 (𝜎1, 𝜎2) = 𝔼 

 

(1 − 𝛽) 
∞ 

t=1 
𝛽 t−1 ui(zt , at ) 

 

[2] 

That is, players aim to maximize their expected discounted 
payoff across all future rounds. 

Factors. A factor (23) is a formal device which constrains the 
complexity of a strategy. The point is that a factored strategy 
must choose actions based on some simple function of the history, 
rather than directly based on the game history itself (Fig. 1C ). 
Formally, a factor 𝜑 is a map from H ∞ to some set X . One 
thinks of 𝜑(h) as some information about h that is stored by 𝜑. 
We require 𝜑 to be such that 

𝜑(z1, a1, . . . , zt ) = 𝜑(z 
1, a

 
1, . . . , z

 
t ) ⇒ zt = z 

t [3] 

That is, 𝜑 must store the current game state (it distinguishes 
between two histories h and h in which the current game state 
is different). A strategy 𝜎i for player i is called 𝜑-factored if 
𝜎i(h)=𝜎i(h ) whenever 𝜑(h)=𝜑(h ). In other words, when the 
factor 𝜑 cannot distinguish between two histories, a 𝜑-factored 
strategy does not distinguish between the two histories either. 

Some of the simplest factors are what we call memory-k factors. 
Such factors only depend on the most recent k rounds. More 
precisely, if 𝜑 is a memory-k factor, and h is a finite history of 
length at least k, then 𝜑(h) is computed by first extracting just the 
outcome of the most recent k rounds—hk—and applying some 
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A 

C 

B 

Fig. 1. Stochastic games. A stochastic game involves infinitely many rounds. In each round, there is a game state, which determines the available actions to 
players and their resulting payos. The actions also lead the game state to transition stochastically from one possible state to another. The game state could 
reflect the external environment, or the actions of additional players who are treated as part of Nature. A stochastic game with one game state is a repeated 
game. (A), we present an example stochastic game with two states. In both states, the players choose between the actions C (“cooperate”) and D (“defect”) of 
a basic cooperative dilemma. The immediate payos in state 2 are half as large. (B), we show a possible game history after five rounds. (C), we indicate one 
possible factor and a corresponding factored strategy. The factor isolates the current game state, the actions of the previous round, and player 2’s action in 
the second-previous round. A factored strategy always decides what to play next based only on this information. In general, factors can be more complicated. 
For example, they may have unbounded memory, or may be able to distinguish between some actions and not others in the game history. 

fixed function 𝜑k to it. That is, 𝜑(h) = 𝜑k(hk). If h has length 
less than k, we simply define 𝜑(h) = h. If 𝜑 is a memory-k factor, 
then a 𝜑-factored strategy is a memory-k strategy (18–22). Such 
strategies decide what to play based only on the outcome of the 
most recent k rounds (during the very first k rounds, the strategy’s 
behavior is not constrained at all. However, see SI Appendix for 
other possibilities). 

Recursiveness. Recursiveness (23) is an important property of 
some factors. It expresses that information about the game history 
can be updated incrementally. Formally, a factor 𝜑 is recursive 
if 𝜑(z1, a1, . . . , zt , at , zt+1) is determined by 𝜑(z1, a1, . . . , zt ), 
by at , and by zt+1. That is, given the information taken into 
account in the previous round, the outcome of that round, and 
the new state, the player has all the information required to make a 
decision in the next round (Fig. 2). This property prevents a factor 
from having a greater memory capacity for rounds more distant 
in the past. Many basic factors are recursive. An example of a non-
recursive factor is one for which 𝜑(z1, a1, . . . , zt ) = (at−2, zt ). 
This factor stores only the current game state zt and the second-
previous round of actions, at−2. The memory cannot be updated 
incrementally, because the new increment of information at , zt+1 
cannot recover the forgotten round of actions at−1. 

Two Key Theorems on 𝝋-Factored Strategies. Based on these 
concepts, Levínský et al. prove the following result (theorem 4.1 
in ref. 23). Consider a stochastic game with countably many 
states, finitely many available actions in each state, a bounded 
payoff function u2, and a discount factor 𝛽 ∈ (0, 1). Let 𝜑 be a 
recursive factor and 𝜎1 be a 𝜑-factored strategy for player 1. Then 
there is a deterministic 𝜑-factored strategy 𝜎2 for player 2, which 
is a best reply to 𝜎1 in all subgames. This means that playing 𝜎2 is 
optimal, regardless of what moves have already been played. The 
upshot of this theorem is that if my opponent is recursively 𝜑-
factored, I can optimize my strategy by also choosing a 𝜑-factored 

strategy. The authors extend this basic result in many directions. 
In particular, they also consider best replies for all sufficiently 
large discount factors, and for the limit of no discounting. 

In the context of payoff equivalence, we can state our main 
result as follows. Consider a stochastic game with finitely many 
states and a discount factor 𝛽 ∈ (0, 1). Let 𝜑 be a recursive 
factor which is memory-k for some k, let 𝜎1 be a 𝜑-factored 
strategy for player 1, and let 𝜎2 be an arbitrary strategy for player 
2, not necessarily even of bounded memory. Then there is a 
𝜑-factored strategy 𝜎 

2 for player 2 such that the 𝛽-discounted 
payoffs 𝜋i 

𝛽(𝜎1, 𝜎 
2) for both players are the same as the original 

payoffs 𝜋i 
𝛽(𝜎1, 𝜎2). Moreover, these equalities hold regardless of 

the payoff functions ui. The upshot of our theorem is that, if my 
opponent is recursively 𝜑-factored, then any strategy of arbitrary 
complexity I may wish to adopt has a payoff-equivalent strategy 
which is also 𝜑-factored. 

After having formulated the key concepts and results for 𝜑-
factored strategies, in the following, we illustrate their significance 
in the simple setting of repeated games. We also present a natural 
motivating application, the identification of complete strategy 
spaces for direct reciprocity. 

Repeated Games. Repeated games can be interpreted as stochas-
tic games with only one static game state. Players meet in infinitely 
many rounds and choose actions from a fixed finite set A each 
time, receiving payoffs according to a payoff matrix. For example, 
in a 2×2 symmetric repeated game such as the repeated prisoner’s 
dilemma (31–34), each player chooses between two actions, C 
and D (for cooperate and defect). They receive payoffs in each 
round according to a matrix 

 C D 
C a b 
D c d 

 

. [4] 

PNAS 2026 Vol. 123 No. 5 e2518486123 https://doi.org/10.1073/pnas.2518486123 3 of 9 

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 P
hi

lip
 L

aP
or

te
 o

n 
Ja

nu
ar

y 
29

, 2
02

6 
fr

om
 I

P 
ad

dr
es

s 
73

.3
8.

80
.2

01
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2518486123#supplementary-materials


A 

B 

Fig. 2. Recursive and nonrecursive factors. A factor serves to group game histories into blocks, according to their factor values. (A factored strategy then 
chooses a move based not on the history but on the block.) It can be represented by a partition of histories. Here, we show two memory-2 factors, or partitions, 
for a simple repeated game with actions C and D. A factor is recursive if the updated block is solely determined by the current block and the new round. Then 
the game is described by a deterministic finite-state automaton with transitions between the blocks. (A), this memory-2 partition is recursive. It has four blocks, 
colored green, yellow, red, and blue. Here, the block describing the most recent two rounds is updated from green to yellow when the new actions CD are 
played. To know that the updated block is yellow, we only need to know that the current block is green and the new actions are CD. (B), this memory-2 partition 
is nonrecursive. It has three blocks. The blocks represent whether the coplayer has cooperated twice (green), once (yellow), or never (blue) during the last two 
rounds. Assume the current block is yellow and the outcome of the most recent round is CD. Depending on the precise memory-2 history, the new block could 
be either yellow or blue. Since the choice is not determined, the partition is not recursive. However, every nonrecursive partition can be made recursive by 
subdividing the blocks further. Notice that the first partition is a refinement of the second. In the worst-case scenario, one can subdivide into the partition of 
singletons, which is recursive. 

Here, each entry refers to the payoff of the row-player. The 
respective payoff of the column player follows from symmetry. 

Memory-k Factors for Repeated Games. Let H be the set 
{CC, CD, DC, DD} of possible outcomes for a single round. For 
example, CD means that player 1 played C and player 2 played D. 
The Cartesian product H n = H × . . . × H is the set of possible 
outcomes for n consecutive rounds. We write a multiround 
outcome using “|” notation: For example, CC|CD|DD refers 
to a sequence of three consecutive rounds. In the most recent 
round, both players played D. A factor 𝜑 then takes all finite 
game histories and maps them to some arbitrary set X . What a 
factor really does is allow us to group the histories into “blocks;” 
each block of histories gets mapped to a unique value x ∈ X . The 
value x need not have any inherent meaning. In practice, x is just 
an “atom” which represents the block. We may produce factors 
simply by constructing appropriate blocks of histories. 

For example, there is a memory-1 factor which groups together 
allhistories ending inCCintooneblock; allhistories ending inCD 
or DC into a second block; and all histories ending in DD into a 
thirdblock.Werepresent this factorbyapartitionofH 1 as follows: 

P = 
 
{CC} , {CD, DC} , {DD} 

 
[5] 

As another example, there is a memory-1 factor which groups 
together all histories ending in CC or DC into one block; and all 
histories ending in CD or DD into a second block. We represent 
this factor by a partition of H 1 as follows: 

P = 
 
{CC, DC} , {CD, DD} 

 
[6] 

As a third example, there is a memory-2 factor which groups 
together all histories ending in CC|CC into one block; and all 
histories ending in other two-round patterns, like CC|CD or 
DD|DD, together into a second block. We represent this factor 
by a partition of H 2 as follows: 

P = 
 
{CC|CC} , {CC|CD, . . . , DD|DD} 

 
[7] 

In this way, every memory-k factor can simply be represented as 
a partition of H k . This representation is convenient because each 
block in P contains just the relevant parts of the histories, that is, 
the outcomes of the most recent k rounds. Thus an infinite block 
of many possible game histories is represented by a small, finite 
block of the partition P (technically, we have ignored histories of 
length smaller than k. For simplicity, we place each of these in 
its own unique block of histories, but we do not include them in 
the partition representation for conciseness). 

There are fifteen memory-1 partitions in total (SI Appendix, 
Fig. S1). Because here we focus on a symmetric game, each 
partition has a well-defined conjugate partition, which is pro-
duced by switching the actions of player 1 and player 2 in 
each history. For example, the conjugate partition of [6] is 
{CC, CD}, {DC, DD} 

 
. Some partitions, like the memory-1 

partition [5] or the memory-2 partition [7], are equal to their own 
conjugate. We call these symmetric partitions. The significance 
of symmetric partitions will be explained below. 
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Sometimes is it useful to subdivide the blocks of a partition 
P to get another partition Q with more blocks. In that case, 
we write P ≤ Q (after all, P has fewer blocks) and say Q is a 
refinement of P. The most refined partition is the partition of 
H k into singletons. In that case, the player distinguishes every 
single memory-k history. 

Recursiveness. Suppose P is a memory-k partition. We write 
[h]P to represent the partition element or block which contains 
h ∈ H k . In terms of partitions, we can interpret the property 
of recursiveness as follows: For any sequence of outcomes for k 
rounds (h1 , . . . , hk) ∈ H k and any new outcome hk+1 

∈ H , 
the block for the updated sequence is completely determined by 
the block for the old sequence, together with the new round. In 
other words, there is an assignment P × H → P such that 

( [h1 , . . . , hk]P    
previous block and 

, 

new round    
hk+1)  −→  

determine 

updated block    
[h2 , h3 , . . . , hk+1]P [8] 

Clearly, all memory-1 partitions are recursive. Here, the next 
moves of the two players fully determine the next block. But 
only 78,721 memory-2 partitions are recursive (out of about ten 
billion in total). For an example of such a recursive memory-2 
partition (and an example of a partition that is not recursive), 
see Fig. 2. As n increases, the proportion of recursive partitions 
among all memory-n partitions shrinks further. But most of the 
nonrecursive partitions are hard to interpret, and unlikely to be 
relevant to evolutionary game theory. Moreover, any partition 
can be refined until it is recursive, as explained in more detail in 
SI Appendix. 

Examples of recursive memory-k partitions can be constructed 
by combining different memory-1 partitions. To see how this 
works, take a collection of memory-1 partitions P1, . . . , Pn and 
define the product partition P = P1 ×· · · × Pn = { b1 ×· · · × 
bn 
bi ∈ Pi}. The definition simply means that for all h, h 

∈ H k , 

[h]P = [h ]P ⇐⇒ ∀j : [hj]Pj = [hj  ]Pj [9] 

Here, hj means the outcome of the jth round, in chronological 
order, in the history h. Such a product partition is recursive if and 
only if P1 ≤ P2 ≤ · · · ≤ Pn. That is, the further events are in the 
past, the coarser the respective partitions tend to be. The intuition 
is that stored memory about a given round must monotonically 
decrease as new rounds are played and the round recedes into 
the past. Some of these product partitions are well known in 
evolutionary game theory, and we will allude to examples below. 
However, product partitions are not the only possibilities. 

Factored Strategies. A memory-k strategy (18–22) decides the 
next move based only on the outcome of the previous k 
rounds. For example, memory-0 strategies choose what to play 
without regard to the previous rounds. These include the strategy 
always-cooperate (ALLC) and always-defect (ALLD). Memory-1 
strategies choose what to play based only on the previous round. 
The strategy win-stay, lose-shift (WSLS) (17, 35) cooperates only 
if both players chose the same action in the previous round. 
The strategy generous tit-for-tat (GTFT) (15, 36) cooperates if 
the opponent cooperated in the previous round, and cooperates 
with some probability q otherwise. Naturally, memory-k factors 
give rise to subspaces of memory-k strategies. We give two 
characteristic examples. 

For the first example, we consider the (symmetric) partition 
given by the trivial memory-1 partition 

 
{CC}, {CD}, {DC}, 

{DD} 

. This partition represents a factor 𝜑 that groups histories 

together into four blocks, according to the exact outcome of 
the previous round. A 𝜑-factored strategy must specify four 
probabilities, p1, p2, p3, p4. Here, p1 corresponds to the first 
block. It is the probability to cooperate if the previous round 
was CC. Likewise, p2 corresponds to the second block, and so 
on. In addition to these conditional cooperation probabilities, 
the strategy must also give a probability p0 for cooperating in 
the very first round. Therefore, in this case, a 𝜑-factored strategy 
is the same thing as a memory-1 strategy. Now, applying the 
theorem of Levínský et al. (23) and our theorem, we conclude 
the following two facts: i) Every memory-1 strategy has a best 
reply (in all subgames) which is also memory-1. ii) If the focal 
player uses a memory-1 strategy and the coplayer uses an arbitrary 
strategy, the coplayer can switch to a memory-1 strategy while 
preserving the payoffs to both players [this extends a result of 
Press and Dyson (24) to the case of discounting.] 

For the second example, take the memory-1 partition [6],  
{CC, DC}, {CD, DD} 

 
. This partition represents a factor 𝜑 

that groups histories together into two blocks, according to 
player 2’s last move. A 𝜑-factored strategy must specify two 
conditional cooperation probabilities, one for each block. Because 
the decision of whether or not to cooperate is based on player 2’s 
most recent move, the factor introduces an important asymmetry 
between the two players. A 𝜑-factored strategy for player 1 
responds to the opponent’s previous move. It is called a reactive-
1 strategy (15, 16). An example is GTFT. On the other hand, 
a 𝜑-factored strategy for player 2 responds to player 2’s own 
previous move. It is called a self-reactive-1 strategy (37). An 
example is Alternator, a strategy which always plays the opposite 
move as it played in the previous round. Now, applying the 
theorem of Levínský et al. (23) and our own theorem, we 
conclude the following two facts: i) Every reactive-1 strategy 
has a best reply (in all subgames) which is self-reactive-1. ii) If 
the focal player uses a reactive-1 strategy, and the coplayer uses 
an arbitrary strategy, then the coplayer can switch to a self-
reactive-1 strategy while preserving the payoffs of both players. 
Again, this example extends a previous result (37) to the case of 
discounting. 

The important difference between the two examples is that the 
first partition is symmetric. Only in this first example, we recover 
the same partition if we swap the moves of the two players. In 
the second example, there are two equivalent ways to look at the 
relationship between reactive-1 and self-reactive-1 strategies. The 
first is to consider the factor 𝜑 to be fixed and the strategy types 
to arise for player 1 and player 2, respectively. The second way is 
to focus on player 1 exclusively and to consider the strategy types 
to arise from two separate factors, one based on the partition 
{CC, DC}, {CD, DD} 

 
and the other based on its conjugate. 

Both pictures are useful for different settings. The first picture 
connects well to our earlier key theorems. The second picture is 
advantageous because it does not require tracking the identities of 
indistinguishable players. Only a focal player, always designated 
as player 1, is relevant. 

Some other examples of the symmetric case include the 
partitions [5] and [7]. Partition [5] leads to the space of memory-
1 counting strategies (19, 38). Counting strategies count how 
many players cooperated in the previous round and respond 
accordingly. The k-fold product of this partition leads to the space 
of memory-k roundwise-counting strategies. Some other notable 
examples of the asymmetric case include the k-fold product of 
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[6] or its conjugate. This leads to the reactive-k strategies and 
self-reactive-k strategies (37, 39). 

Overall, we note that memory-k partitions are either symmetric 
or asymmetric. The asymmetric partitions come in conjugate 
pairs. For evolutionary simulations, partitions with fewer blocks 
are often more practical, because they generate strategy spaces 
with fewer dimensions. 

Completeness. In the previous section, we illustrated how the 
theorem of Levínský et al. (23) and our own theorem have 
meaningful implications for two different recursive partitions. 
We saw that the implications depended on whether the partitions 
were symmetric or asymmetric. In this section, we explain 
how these theorems establish certain important completeness 
properties. 

For symmetric partitions, the situation is simple. Each 
symmetric partition gives rise to a single space of strategies. 
For example, for the partition {{CC}, {CD, DC}, {DD}}, we 
obtain the memory-1 counting strategies. That strategy space 
S is guaranteed to enjoy two completeness properties. Best-reply-
completeness means that for each strategy s ∈ S, there exists a 
strategy s ∈ S that is a best reply to s in all subgames. This means 
that given the history of the game up to any point, no strategy can 
achieve a greater continuation payoff against s than the payoff s 
achieves against s. Payoff-completeness means that the following 
holds: for every strategy s ∈ S for the focal player, and every 
strategy s for the coplayer (of arbitrary complexity), there is a 
strategy s ∈ S for the coplayer which achieves the same payoffs 
to both players. We call this s a payoff-preserving reply. Payoff-
completeness then guarantees the existence of payoff-preserving 
replies. Best-reply-completeness guarantees the existence of a best 
reply. 

For asymmetric partitions, the situation is a bit more com-
plex. Each asymmetric partition and its conjugate, such as 
{{CC, DC}, {CD, DD}} and {{CC, CD}, {DC, DD}}, give rise 
to two distinct strategy spaces—in this case, the spaces of reactive-
1 and self-reactive-1 strategies. Neither of these is necessarily 
complete on its own. However, a best reply or payoff-preserving 
reply to a strategy in one space can always be found in the 
other space. In particular, their union is best-reply-complete and 
payoff-complete. 

Fig. 3 illustrates payoff-completeness in a repeated prisoner’s 
dilemma. Here, player 1 uses a memory-1 counting strategy 
s1 = (p{CC}, p{CD, DC}, p{DD}) = (1, 1/4, 0). Player 2 uses 
a memory-1 strategy s2 = (p{CC}, p{CD}, p{DC}, p{DD}) = 
(3/4, 1, 1/4, 1/2). (Note that in our convention, the subscripts 
CD and DC are ordered with player 1’s move first and player 2’s 
move second.) The figure confirms that player 2 can switch to 
a memory-1 counting strategy s 2 = (3/4, 7/16, 1/2), without 
changing the payoff of either player. 

Fig. 4 A and B provides a different illustration of the same 
insight. Again, player 1 uses some fixed memory-1 counting 
strategy. For player 2 we sample a large number of strategies, 
either from the space of memory-1 strategies (Left) or from the 
memory-1 counting strategies (Right). In line with our results, 
the two generated payoff spaces coincide. 

Fig. 4 C and D illustrates a strategy space which is incomplete 
in both senses, the space of reactive-2 strategies. In this example, 
player 1 uses a fixed reactive-2 strategy. Player 2 varies over 
a sample of other reactive-2 strategies (Left) or self-reactive-2 
strategies (Right). We observe that player 1’s strategy is a best reply 
to itself in the space of reactive-2 strategies, even though it can 
be invaded by a self-reactive-2 strategy. This is an example where 

Fig. 3. Payo-completeness in action. A strategy space S for a symmetric 
game is payo-complete if the following holds: If the focal player uses a 
strategy in S and the coplayer uses an arbitrary strategy, then the coplayer 
can switch to a strategy in S without changing the payo of either player. 
Equivalently: If my opponent has a fixed strategy in S and I am free 
to vary my strategy, then I can realize all feasible payo outcomes by 
varying my strategy in S only. Here we show an example of a payo-
complete subspace of memory-1 strategies, the space of memory-1 counting 
strategies. Memory-1 counting strategies only depend on how many of 
the two players cooperated the previous round. Suppose player 1 uses a 
counting strategy p = (1, 1/4, 1/4, 0) while player 2 uses a memory-1 strategy 
q = (3/4, 1, 1/4, 1/2) as shown. Then player 2 can switch to the payo-
equivalent counting strategy q = (3/4, 7/16, 7/16, 1/2). Neither player’s 
payo is aected. This conclusion does not depend on the payo matrix 
of the game. While our main results are stated for a discount factor 𝛽 < 1, the 
property of payo-equivalence also applies in the limit 𝛽 → 1 when payos 
are uniquely defined. For convenience, we have assumed this limit when 
computing the new strategy and the payos. 

evolutionary results for a strategy space can be misleading. When 
running simulations restricted to reactive-2 strategies, player 1’s 
strategy in Fig. 4 C and D might well arise as a stable outcome. Yet 
if the simulation also allowed for (equally complex) self-reactive-2 
strategies, this outcome would no longer be robust. 

We conclude with a few remarks. First, as defined here, payoff-
completeness is concerned with finding a strategy s ∈ S that 
preserves payoffs for the entire game, given the two players 
start in the initial round. Instead, one may be interested in 
payoff-preserving replies starting from arbitrary subgames. While 
under the appropriate conditions one can indeed find the 
respective payoff-preserving replies in S, they might depend 
on the subgame—on the game history up to the time of the 
switch. The situation is different for best-reply completeness. 
Here, under appropriate assumptions, one can find strategies 
that are a best reply in all subgames (23). 

Second, herein, we focus exclusively on the case of discounted 
games, with 𝛽 ∈ (0, 1). For the complete spaces that satisfy our 
criteria, however, Levínský et al. have also established best-reply-
completeness in the limiting average payoff case (no discounting). 
Addressing this limit for payoff-completeness is a possible topic 
for future work. 

Finally, we note that our result provides a sufficient condition 
for completeness, but not a necessary one. To illustrate this point, 
consider the space of reactive-1 strategies. Since the associated 
partition is not symmetric, this space, taken by itself, does not 
satisfy our criteria for completeness. Yet it turns out that the 
space is nevertheless payoff-complete for some particular payoff 
matrices (e.g., a donation game, which is additive 39, Fig. 5A), 
despite being incomplete for others (e.g., a snowdrift game, 
Fig. 5B). 
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A 

C D 

B 

Fig. 4. Complete and incomplete strategy spaces. We examine a prisoner’s dilemma with (a, b, c, d)=(2, −1, 3, 0). Although our results are stated for discount 
rate less than 1, analogous phenomena arise in the limit of no discounting 𝛽 → 1, which we use here for convenience. (A and B), We fix player 1’s strategy to 
be the memory-1 counting strategy p =(0.42, 0.70, 0.70, 0.00). For the strategy of player 2, we randomly sample a large number of memory-1 strategies (A) or 
memory-1 counting strategies (B). The covered area of payos is the same in both cases because the space of memory-1 counting strategies is based on a 
symmetric and recursive partition, and hence is payo-complete. (C and D), We assign player 1 a fixed strategy from a space that is neither best-reply-complete 
nor payo-complete, the space of reactive-2 strategies. This strategy is p =(1, 0.85, 0.85, 0), corresponding to the last two actions of the opponent, CC, CD, DC, 
DD. (C), Player 2 samples a large number of reactive-2 strategies, generating an area of feasible payos. Note that p is the best-reply to itself in the space of 
reactive-2 strategies. (D), Among the self-reactive-2 strategies, one can find a better reply, such as the Alternator strategy that alternates between cooperation 
and defection each round. The resulting payo for the Alternator is 2.05, which exceeds the payo 2.00 of p against itself. The area of feasible payos is strictly 
larger, showing that the space of reactive-2 strategies is not payo-complete. The area on the right cannot grow any larger by expanding the strategy space of 
player 2: one can always find a payo-preserving reply among the self -reactive-2 strategies. 

Discussion 

Repeated games and stochastic games play an important role 
in evolutionary game theory. They serve as natural models 
to capture the essence of reciprocity (6). Such models can 
explain the dynamics of friendships (40), competing firms (41), 
or of trade networks (13). In practice, individuals in these 
applications might employ highly nontrivial strategies, which 
depend on events arbitrarily far in the past. Yet when describing 
such interactions mathematically, researchers often restrict the 
strategies’ complexity. Such a restriction can be useful. It may 
allow researchers to obtain analytical results that otherwise would 
be infeasible. At the same time, such restrictions also entail a risk. 
Results thus obtained might be spurious. Certain strategies might 
only evolve because mutants that could easily invade are rendered 
impossible by design. To address that risk, we introduce two 
complementary concepts of complete strategy spaces. If a space S 
is best-reply-complete, then any strategy in S has a best reply in S. 
If the space is payoff-complete and the focal player uses a strategy 
in S, then one can find for any strategy of the coplayer a strategy in 
S that leaves the payoffs for both players unchanged. That is, any 
outcome that can be realized against an S opponent can be realized 
with a strategy in S. Levínský et al. (23) have introduced a general 

criterion for a strategy space to be best-reply-complete. We 
show that the same criterion also implies payoff-completeness. 
Interestingly, when that criterion applies, the strategy space is 
payoff-complete irrespective of the precise game being considered 
and irrespective of the precise discount rate. 

Complete spaces are useful when interpreting evolutionary 
simulations and determining best responses. For example, if a 
strategy is a best reply within a best-reply-complete strategy space, 
then it remains a best reply even if more complex strategies are 
considered. 

Our motivation to study complete strategy spaces is related to 
recent arguments that strategy spaces should be unbiased (42). 
This latter requirement means that researchers should not cherry-
pick the strategies they choose to compare. For example, instead 
of analyzing the competition of ALLC, ALLD, and Tit-for-Tat, 
researchers should permit all strategies of a given complexity 
class (in this case, say all reactive strategies). Our results, however, 
suggest that this requirement of unbiasedness may not be enough. 
Even when exploring the evolutionary dynamics among all 
reactive strategies, the winning strategy may still perish once we 
allow for strategies of higher or different complexity (Fig. 5B). To 
manage that risk, our two notions of completeness seem key. For 
example, when a given resident strategy s ∈ S is challenged by rare 
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A B 

Fig. 5. Whether a space is complete can depend on the game. For spaces that are not based on recursive symmetric partitions, it may depend on the specific 
game whether the space is payo-complete. Here, we assume player 1 adopts a fixed reactive-1 strategy p = (1, 0.85) (for a coplayer who cooperated or 
defected in the previous round, respectively). The partition associated to reactive-1 strategies is not symmetric. For the coplayer, we either sample reactive-1 
strategies (blue points), or self-reactive-1 strategies (green points). (A), When payos are given by a donation game, (a, b, c, d)=(2, −1, 3, 0), the space of reactive-
1 strategies is payo-complete. (B), For a snowdrift game, (a, b, c, d)=(2.5, 2, 3, 0), the space is no longer payo -complete. In both cases, for convenience, we 
have taken a discount rate approaching one, 𝛽 → 1. 

mutants, payoff completeness of S implies that the resident faces 
the full range of possible mutant payoffs. Any payoff that can be 
realized in an interaction against the resident can be realized by 
a mutant strategy drawn from within S. 

Importantly, however, this result does not ensure that the 
distribution of mutant payoffs is preserved. For example, for 
a given memory-1 resident, the generated payoffs may differ 
depending on whether random mutants are drawn from the space 
of memory-1 strategies or memory-2 strategies (even though 
any memory-2 strategy can be emulated within the memory-
1 space). In particular, even for a complete strategy space, 
simulation results still depend on the specific process used to 
generate random mutants. Therefore, it remains important to 
explore the effect of different mutation schemes when performing 
evolutionary simulations. 

The criterion for completeness involves the notion of recursive 
factors (23) or partitions. All partitions of memory-1 histories 
are recursive. Only a small number of memory-k partitions are 
recursive. However, every partition can be refined into a recursive 
partition. Therefore, for every strategy space, it is possible to find a 
(slightly) larger one which is complete. In SI Appendix, the general 
mathematical theory, which may be useful in further extensions, 
is discussed at length. We describe how recursiveness enters the 
picture when studying games, and what can go wrong when it 
is absent. We also describe an explicit algorithm for refining a 
partition to make it recursive. Many additional examples and 
details are also contained there. 

An interesting open problem is to give a set of necessary and 
sufficient conditions for completeness. The condition we present 
here is sufficient but not necessary. Another open problem is 
whether certain strategies such as ALLD are necessarily part 
of any complete space. A last promising direction is to extend 
the idea of completeness to repeated games with an alternating 
move structure (43–45), or to extend payoff-completeness to 
other settings where some results on best replies are known, for 

example, continuous strategy spaces (23, 46, 47), or spaces of 
time-dependent strategies (23, 48). 

Materials and Methods 

To establish our result, we use the theory of Markov decision processes, or MDPs. 
A Markov decision process is equivalent to a stochastic game with only one 
player. Beginning with a stochastic game, we expand the state space into a 
space of game histories. Thus, we track previous moves as well as the current 
state. This allows us to abstract out one player by absorbing this player’s strategy 
into the transition probability. The result is a Markov decision process for the 
remaining player. We generate a multiobjective Markov decision process (or 
MOMDP) by storing both players’ payoffs in a vector. 

This technique is described at length in our SI Appendix. We derive our main 
result by applying a lemma which holds for a certain class of state-aggregated 
multiobjective Markov decision processes, which we call factored (MO)MDPs. A 
factored strategy for the abstracted player leads to a factored MDP for the focal 
player. The lemma states that any strategy for a factored MDP has a stationary 
(based on the current state) strategy which achieves the same vector payoff. 

Data, Materials, and Software Availability. There are no data underlying 
this work. 
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