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Abstract
Summary: For model species, single-cell RNA-based cell atlases are available. A good cell atlas includes all major stages in a species’ ontogeny,
and soon, they will be standard even for nonmodel species. Here, we propose a Python package called oggmap, which allows for the easy ex-
traction of an orthomap (gene ages per orthogroup) for any given query species from OrthoFinder and other gene family data resources, like ho-
mologous groups from eggNOG or PLAZA. oggmap provides extracted gene ages for more than thousand eukaryotic species which can be fur-
ther used to calculate gene age-weighted expression data from scRNA sequencing objects using the Python Scanpy toolkit. Not limited to one
transcriptome evolutionary index, oggmap can visualize the individual gene category (e.g. age class, nucleotide diversity bin) and their corre-
sponding expression profiles to investigate scRNA-based cell type assignments in an evolutionary context.

Availability and implementation: oggmap source code is available at https://github.com/kullrich/oggmap, documentation is available at https://
oggmap.readthedocs.io/en/latest/. oggmap can be installed via PyPi or directly used via a docker container.

1 Introduction

In recent years, the availability of single-cell RNA (scRNA) se-
quencing data and its analysis tools has constantly been on
the rise. However, using phylogenetic information with
scRNA data to, e.g. better predict cell types in a cross-species
manner is so far sparse (Tarashansky et al. 2021). Linking
gene age with RNA sequencing data to better explain the de-
velopmental stages of an organism in the context of evolution
has been a topic for over a decade (Domazet-Lo�so et al. 2007,
Domazet-Lo�so and Tautz 2010, Quint et al. 2012, Liu and
Robinson-Rechavi 2018, Liu et al. 2020, Ma and Zheng
2023). Methods to infer phyletic pattern of genes for a given
query species are still a time-consuming step and as such a
bottleneck to weight expression of a gene by its gene age.
Once gene ages are inferred, the transcriptome age index
(short TAI) can distinguish between a “young” and an “old”
transcriptome to, e.g. investigate the hourglass model of em-
bryonic development (Domazet-Lo�so and Tautz 2010, Ma
and Zheng 2023) or to highlight cell type-specific enrichment
patterns (Cazet et al. 2022). TAI calculation is already imple-
mented in the R myTAI package, primarily working with
bulk-RNA data (Drost et al. 2018), so far lacking a Python
supplement.

Since introducing TAI, a variety of analysis types have been
created to link and weight transcriptome data with an evolu-
tionary age or a different evolutionary index, like gene

substitution rates or promoter conservation score (Quint et al.
2012, Drost et al. 2015, Gossmann et al. 2016, Liu et al.
2020, Ma et al. 2021). As a consequence, not be limited to
age, we use the parent term transcriptome evolutionary index
(short TEI) as introduced by Liu and Robinson-Rechavi
(2018). The transition of the TEI analysis from bulk-RNA
data to scRNA data, which both rely on an evolutionary age
category, just recently begun (Cazet et al. 2022, Ma and
Zheng 2023). If based on blast sequence searches, the result-
ing gene ages are collected for each individual gene (so-called
phylostratigraphic maps). The age assignment is based on the
“oldest” found homolog along the tree of life.

In contrast to the original implementation (Domazet-Lo�so
and Tautz 2010) using blast hits to extract gene ages, ortholo-
gous groups can be used (Ruprecht et al. 2017). This will as-
sign gene ages not per gene, but will assign the same
evolutionary age to all genes of a given orthogroup. It is im-
portant to note that to extract the gene age for a given
orthogroup, one needs to define a query species to start from
(sometimes called focal species). Given a query species, all
other species members of the same orthogroup are compared
using a species tree to extract the lowest common ancestor
(LCA). In other words, the deepest node from the query spe-
cies tip to the root node or the last universal common ancestor
of the species tree (Julca et al. 2021). We call the resulting
gene age classification orthologous groups map (short
orthomap).
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2 Oggmap implementation

oggmap (implemented in Python) uses different bioinformatic
methods for importing, analyzing, and visualizing. All main
steps of oggmap are illustrated in Fig. 1a. The documentation
of oggmap will guide the user through all necessary steps.
oggmap relies on orthogroups and can parse so far results
from either OrthoFinder (Emms and Kelly 2019), or precalcu-
lated gene family databases, like eggNOG (Hernández-Plaza
et al. 2023) or PLAZA (Van Bel et al. 2022). oggmap provides
gene age class assignments for a high number of species
(Ensembl release-110: 317; eggNOG v6: 1322, PLAZA v5:
98 dicots and 52 monocots), so that a researcher might start
directly to analyze scRNA data for a given query species of in-
terest. If the query species is not among them, the guide will
help how to perform the mandatory step 0. All further steps
to create an orthomap (steps 1 and 2) can be run on command
line as well as using the Python API. Given a query species,
the taxonomic lineage information will be used (qlin module)
to assign an age class per orthogroup based on the LCA
(of2orthomap module). Internally, these steps use the Python
toolkit ete3 (Huerta-Cepas et al. 2016) to fetch NCBI taxo-
nomic tree information. In addition, for each orthogroup a
continuity score can be optionally calculated, which repre-
sents the species completeness along the tree nodes from the
LCA to the focal species. A low continuity score would

thereby highlight, e.g. a possible horizontal gene transfer
event, where intermediate tree nodes lack any detectable
orthologs. All further steps (3, 4, and downstream analysis 5)
to match gene names from the orthomap and scRNA data (in
case of different annotation source; gtf2t2g module), calculate
TEI, and visualizing the results (orthomap2tei module) are
run with the Python API in, e.g. a Jupyter notebook (Fig. 1b–
g). Internally, NumPy (Harris et al. 2020), pandas DataFrame
objects (McKinney et al. 2011), and the Scanpy toolkit (Wolf
et al. 2018) with AnnData objects are the working horses.

Dealing with scRNA data introduces a computational bur-
den to TEI calculation, since unlike for bulk-RNA data with a
rather low number of stages, now thousand of cells need to be
processed. TEI is implemented as given in Domazet-Lo�so and
Tautz (2010) and due to sparse-matrix calculation scales for
millions of cells. TEI represents the weighted arithmetic mean
(expression levels as weights for the age category) over all
evolutionary age categories denoted as phylostra.

TEIc ¼
X
ðeic � psiÞ=

X
eic: (1)

TEIc denotes the TEI value in a cell or a cell type c, eic denotes
the gene expression level of gene i in cell c, and psi denotes the
corresponding phylostratum of gene i, i ¼ 1; . . . ;N, where N
is the total number of genes.

Figure 1. (a) Overview of oggmap steps. (b) Orthomap for the query species zebrafish (Danio rerio). Each gene (seqID) from an Orthogroup is assigned to

a gene age class (PSnum, PSname) given a continuity score (PScontinuity). (c) Number of genes per gene age class. (d) Boxplot of zebrafish (D.rerio) TEI

values grouped per embryo stage. (e) Contribution of gene age classes to the global TEI per embryo time (nematode). Zebrafish scRNA data UMAP, each

cell is colored by embryo stage (f) or its corresponding TEI value (g).
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Next to adding TEI values to scRNA data (get_tei), other
useful function from the myTAI R package (Drost et al.
2018) has been ported to Python and extended to deal with
cell-type groups. For example, one can calculate partial TEI
values (get_pstrata) to visualize the contribution of each gene
age class to the global TEI pattern. Or extract the relative ex-
pression per gene age class grouped by any annotated obser-
vation like cell-type or sampling timepoint starting either
from raw counts or using the implemented expression trans-
formation options (get_rematrix). Other gene based metric,
like Tajima’s D (Tajima 1989) or F-statistics (Wright 1965)
can be binned and used as gene groups to weigh expression
(get_bins).

3 Case study: re-analysis of zebrafish (Danio
rerio) and nematode (Caenorhabditis elegans)
single-cell data

To demonstrate oggmap, we re-analyzed a single-cell dataset
of combined and integrated �70 000 zebrafish cells (Farrell
et al. 2018, Wagner et al. 2018, Qiu et al. 2022) and �90 000
nematode cells (Packer et al. 2019). A detailed Jupyter note-
book to reproduce the case study for zebrafish (D.rerio) and
nematode (C.elegans) is shown in the Supplementary
Material.

In brief, to obtain an orthomap for zebrafish, we first run
OrthoFinder (-S last) (Kiełbasa et al. 2011, Emms and Kelly
2019) to get orthologous groups for the complete species set
of Ensembl release-110. Starting from coding sequences only
the longest-isoform per gene was retained and converted into
amino acid sequences (Ullrich 2020). For nematode, a pre-
existing gene age map was imported (Sun et al. 2021).

Further, setting zebrafish as the focal species, we extracted
the corresponding orthomap (Fig. 1b) and highlight the num-
ber of genes per gene age class (Fig. 1c). TEI was calculated
for each cell and the distribution of TEI values visualized per
developmental stage (Fig. 1d). As compared to the original
publication, showing the hourglass model of embryonic devel-
opment in zebrafish and the vertebrate phylotypic phase
falling between 11- and 42-h postfertilization (hpf) (Domazet-
Lo�so and Tautz 2010), the re-analysis using scRNA data
shows the lowest global TAI values at the 12-h stage (12 hpf).
Here, like recently shown for C.elegans by Ma and Zheng
(2023), this results confirms the “hourglass” pattern using
embryonic zebrafish scRNA data. Researcher should now be
able to investigate in more detail individual cell types that
contribute to the development stages in the context of evolu-
tion (see Supplementary Material). The stacked partial TEI
values (Fig. 1e) can highlight the contribution of each gene
age class to the total TEI pattern. Here, the results confirm the
findings of Ma and Zheng (2023) that the “youngest” genes
specific to C.elegans and sister species (age class 11–13) peak
in early embryos (Fig. 1e). Following the basic tutorial of
Scanpy (Wolf et al. 2018) to get a dimensional reduction
of the given scRNA data and the Uniform Manifold
Approximation and Projection (UMAP) algorithm (McInnes
et al. 2018), cells were visualized and colored by stage
(Fig. 1f) or its corresponding TEI values (Fig. 1g).

Additional downstream analysis and other species, like
Xenopus tropicalis, Mus musculus, and Hydra vulgaris, are
available via the documentation of oggmap at https://ogg
map.readthedocs.io/en/latest/.

4 Conclusion

oggmap is a versatile Python package to extract gene ages per
orthologous group from OrthoFinder (Emms and Kelly
2019), eggNOG (Hernández-Plaza et al. 2023), and PLAZA
(Van Bel et al. 2022) results and seamless integrate the result-
ing evolutionary age index with transcriptome data from
scRNA datasets and the Scanpy toolkit (Wolf et al. 2018).
oggmap can help the investigator to map gene and transcript
names to be able to integrate nonstandard gene annotations
(e.g. for species with only transcriptome assemblies). Next to
evolutionary age indices, other indices like gene adaptation
scores become relevant (Moutinho et al. 2022) and can be
used to calculate TEI to look into cell-type specific pattern.
With oggmap, evolutionary biologist, medical research data
analysts, and the up-rising community of single-cell data
researchers will be able to enrich their scRNA data by another
layer, namely evolution.
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Data availability

OrthoFinder (Emms and Kelly 2019) results for Ensembl
release-110, including species taxonomic IDs, are available
here: https://doi.org/10.5281/zenodo.7242263. For each spe-
cies of the eggNOG database v6.0 (Hernández-Plaza et al.
2023) and each species of the PLAZA database v5.0 (Van Bel
et al. 2022), an orthomap is available here: https://doi.org/10.
5281/zenodo.7242263. scRNA data for zebrafish (Danio
rerio), frog (Xenopus tropicalis), and mouse (Mus musculus)
were obtained from https://tome.gs.washington.edu(Qiu et al.
2022), converted into Scanpy AnnData objects (Wolf et al.
2018) and are available here: https://doi.org/10.5281/zenodo.
7243602, https://doi.org/10.5281/zenodo.7244440, and
https://doi.org/10.5281/zenodo.7244567. scRNA data for
Caenorhabditis elegans (Packer et al. 2019) were obtained
from https://www.ncbi.nlm.nih.gov/geo/ using the accession
number GSE126954, converted into Scanpy AnnData objects
(Wolf et al. 2018), and are available here: https://doi.org/10.
5281/zenodo.7245548. Precalculated gene age assignments
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were obtained from Sun et al. (2021). Precalculated gene ad-
aptation indices were obtained from Ma et al. (2021).
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